Saturday, 3 February 2024

CLASS-XII (QUICK RESPOND TEST)







R-3

1) Find dy/dx when y= ₓx²+ ₐx². 

2) if y= xⁿ{a cos(logx)+ b sin(logx)}, show that x² d²y/dx²+ (1- 2n) x dy/dx + (1+ n²)y= 0.

3) find the derivative of x² cosx. 

4) Find derivative of tan(√x). 

5) If cosy = x cos(a+ y), show that dy/dx = (cos²(a+ y)/sina.

6) evaluate: tan⁻¹(a/b) - tan⁻¹{(a-b)/(a+ b)}. 

7) If y= c₁x⁻¹ + c₂x², the value of x² d²y/dx² is:
a) x b) y c) 2x d) 2y

R-2

1) If A= 0   0    -1
              0  -1    0
             -1   0    0 then the only correct statement about the Matrix A is 
a) inverse of A does not exist 
b) A= (-1)I c) A is zero matrix 
d) A²= I

2) The value of determinant 
   a²    - ab      - ac
- ab       b²      - bc
  ca      bc      - c² is
a) 4a²b² b) 4b²c² c) 4c²a² d) 4a²b²c²

3) If y= sin(πeˣʸ)/6, then the value of dy/dx at x= 0 is
a) √3/24 b)  √3 π/24 c) √3/12 d)  √3π/12

4) If f(x)= √(1+ cos(x²)) then the value of f'(√π/2) is
a) -√π/√6 b) √π/√6 c) π/2√2 d) π/√6 

5) The slope of the tangent to the curve x= 3t²+ 1, y= t³- 1 at t=1 is
a) 1/2 b) 0 c) -2  d) undefined 

6) If f(x)= x³- 6x²+ 9x +3 be a decreasing function, then x lies in 
a) (1,3) b) (-∞,1) U(3,∞) c) (3,∞) d) none

7) The equation of the normal to the curve x³+ y³= 8xy at the point where it meets the parabola y²= 4x is
a) x+ y= 0 b) x- y= 0 c) x- y= 4 d) x+ y= -4

8) The difference between the maximum and minimum values of the function f(x)= x³/3 - 2x² + 3x +1 is
a) 4 b) 2 c) 1 d) 4/3

9) If 2x+ 3y = 4, the maximum value of xy is
a) 3 b) 2/3 c) 1 d) 1/3











R-1

1) The co-actor of a₂ in the determinant 
a₁      a₂
a₃      a₄ is _____

2) State whether the following statement is true or false: if f(x) is a polynomial of degree n(≥1), then the degree of f'(x) is (n+1).

3) If y= (x -1)eˣ, then the value of dy/dx at the point x= 1 is
a) e b) 2e c) 1 d) 0

4) If y= 1+ cos2x then d²y/dx² + 4y= __

5) ∫ 3ᵅˣ dx ?
a) 3ᵅˣ⁺¹ b) 3ᵅˣ c) 3ᵅˣ logₑ3ᵅ d) 3ᵅˣ/(alogₑ3)

6) Without expanding at any stage, find the value of the determinant:
      2      x       y+z
∆= 2      y       z+ x
      2      z       x+y
a) x+ y b) xy c) xyz d) 1 e) none

7) Solve: sin⁻¹ cos(sin⁻¹x)=π/3 
a) 1 b) 0 c) ±1/2 d) 2

8) Find the value of k if
M= 1     2
       2     3 and M²- kM - I₂= 0.
a) ±2 b) 1 c) 3 d) 4

9) Find the intervals in which the function f(x) is strictly increasing where f(x)= 10 - 6x - 2x².
a) 3/2 b) -3/2 c) (-∞,-3/2) d) (3/2,∞)

10) Find d²y/dx², if x= at² and y= 2at
a) 1/t b) 2at c) 1/2at d) 1/2at²


No comments:

Post a Comment