Monday, 27 November 2023

Test Paper on Trigonometry - XI

1) If a sin²x + b cos²x = c, b sin²y + a cos²y = d, and a tanx = b tany, show that, 1/a + 1/b = 1/c + 1/d.

2) Evaluate: sin⁴π/8 + sin⁴3π/8 + sin⁴5π/8 + sin⁴7π/8.

3) Show: sin(2 tan⁻¹1/2)= cos(2tan⁻¹1/3).

4) If (sin⁴x)/a + (cos⁴x)/b = 1/(a + b), show (sin¹⁰x)/a⁴ + (cos¹⁰x)/b⁴ = 1/(a+ b)⁴.

5) Evaluate: 1/(2sin10)  - 2 sin 70.    

6) If tanx, tany are the roots of x²+ px + q =0, find the value of sin²(x + y) + p sin(x +y) cos(x + y)+ q cos²(x + y).    

7) If tan(x + y - z)/tan(x - y + z) = tan z/tan y, show that sin(y - z)= 0 or sin2x + sin2y + sin2z =0.

8) Show that cot70 + 4 cos 70= √3.

9) If cos(x - y)+ cos(y - z)+ cos(z - x)= - 3/2, show that, cos(x - y)= cos(y - z)= cos(z - x)= -1/2.

10) If a, b are two values of x satisfying a tanx + b secx = c, show tan(a+ b)= 2ac/(a²- c²).

11) If (tan(a - b))/tana + sin²c/sin²a = 1, show that tana tanb = tan²z.

12) If tanx = (tan a+ tanb)/(1+ tana tanb), show sin2x= (sin2a + sin2b)/(1+ sin2a sin2b).



2) 3/2 5) 1 6) q

No comments:

Post a Comment