RELATION AND MAPPING
2) Find the number of equivalence relation on set A={a,b,c} containing elements (b,c) and (c,b). 2
3) If f(x)= sin x, g(x)= x² and h(x)= log x, find the composite function [ho(gof)](x). 2 log(sinx)
4) Let N be the set of all natural numbers and R be the relation on N x N defined by (x,y) R(z,t) => xt(y + z)= yz(x +t).
Check whether R is anequivalence relation on N x N. Yes
5) Let R be the set of real numbers and X={x ∈ R : -1 < x < 1}= Y. Is the mapping f: x --> R defined by f(x)= (2x -1){1 - |2x -1|} bijective ? Yes
TRIGONOMETRIC FUNCTION
1) PROVE:
a) tan⁻¹{(2 sin2x)/(1+ 2 cos2x)} -1/2 sin⁻¹{(3 sin2x)/(5+ 4 cos2x)}= x.
b) tan⁻¹{(3 sin2x)/(5+ 3 cos2x)} + tan⁻¹{(1/4 tanx)} = x.
c) 2 sin⁻¹(2/√13) + 1/2 cos⁻¹(7/25)+ tan⁻¹(63/16)=π.
2) If cos⁻¹x + cos⁻¹y + cos⁻¹z =π and x + y + z =3/2, then show that x= y= z.
3) If tan⁻¹a + tan⁻¹(1/b)= tan⁻¹3, then find the positive integral values of a and b. 1,2 or 2,7
4) If tan⁻¹[{√(1+ x²) - √(1- x²)}/{√(1+ x² + √(1- x²)}] = θ ; then show that sin2θ = x².
5) If (n tanθ)/cos²(α -θ) = {m tan²(α -θ}/cos²θ} then show that 2θ= α - tan⁻¹{(n - m)/(n + m) tanα}.
6) If φ = tan⁻¹{x √3/(2k - x)} and θ = tan⁻¹{(2x - k)/k √3}, then show that one value of φ - θ is 30°
7) If sin⁻¹(x/a) + sin⁻¹(y/b) = sin⁻¹(c²/ab), then show that b²x² + 2xy √(a²b² - c⁴) + a²y² = c⁴.
8) Solve: cos⁻¹x - sin⁻¹x = cos⁻¹(x √3). 0, ±1/2
DETERMINANT
By using properties of determinant. Prove that:
1) (x +4) 2x 2x
2x x +4 2x = (5x +4)(x -4)²
2x 2x x+4
2) 1 1+ x 1+ x + y
2 3+2x 1+3x +2y =1
3 6+3x 1+6x+3y
3) a a² 1+ xa³
b b² 1+ xb³
c c² 1+ xc³
= (1+ abcx)(a - b)(b - c)(c - a)
4) (y + z)² x² x²
y² (z + x)² y² = 2xyz(x + y+ z)³
z² z² (x + y)²
5) - yz y²+ yz z²+ yz
x²+ zx -zx z²+ zx
x²+ xy y²+ xy -xy
= (xy + yz + zx)³
6) (y + z)² z² y²
z² (z + x)² x²
y² x² (x + y)²
= 2(xy+ yz + zx)³
7) ax - by - cz ay+ bx cx+ az
ay + bx by - cz- ax bz+ cy
cx+ az bz+ cy cz - ax- by
= (a²+ b²+ c²)(x² + y²+ z²)(ax + by + cz)
METRICES
1) If A= -4 4 3 & B= 1 -1 1
-7 1 3 1 -2 -2
5 -3 -1 2 1 3 find AB and use this to solve the following system of equation: x - y + z=4; xx - 2y - 2z=0 ; 2x + y + 3z= 1. 3,-2,-1
2) Let X= 3 2 5
4 1 3
0 6 7 express X as sum of two matrices such that one is symmetric and other is skew-symmertric.
LIMIT, CONTINUITY AND DIFFERENTIABLE
1) lim ₓ→∞ √x{√(x +3) - √x}. 3/2
2) lim ₓ→₀ {(x -1 + cosx)/x}¹⁾ˣ . e⁻¹⁾²
3) lim ₓ→∞ {(x +5)/(x +1)}ˣ. e⁴
4) lim ₓ→π/2 (1+ cosx)³ˢᵉᶜˣ. e³
5) lim ₓ→₀ (1+ 3x)^(x+3)/x. e³
6) lim ₓ→₀ {log(x²+ x+1)+ log(x²- x+1)}/(secx - cosx). 1
7) lim ₓ→₀ {xeˣ - log(x +1)}/x². 3/2
8) lim ₓ→₀ {tan(π/4 + x)}¹⁾ˣ. e²
9) lim ₓ→₀ (sinx + cosx)¹⁾ˣ. e
10) lim ₓ→₀ {sin log(1+ x)}/log(sinx +1). 1
1) Prove that the function f(x)= sinπ |x| is continuous at x =0 but not differentiable at the same point.
2) If g(x) is the universe of f(x) and f'(x)= (1+ x³)⁻¹, show that g'(x)= 1+ {g(x)}³.
3) A function f(x) is defined as follows:
- 2sinx, when -π ≤ x ≤ -π/2
f(x)= a sinx + b, when -π/2< x < π/2
cosx, when π/2≤ x ≤ π
If f(x) is continuous in the interval -π≤ x ≤π. find the value of a and b. -1,1
DIFFERENTIATION
1) Find dy/dx when
a) xˢᶦⁿ ʸ + yˢᶦⁿˣ =1.
b) y= tan⁻¹{x/(1+ √(1- x²))}+ sin(2tan⁻¹√{(1- x)/(1+ x)}.
c) (√x)ˣ + (x)^√x.
d) y= tan⁻¹(√x - ⁴√x)/(1+ ⁴√x³).
e) xˡᵒᵍˣ + (sinx)ˣ+ 15x.
2) Find d²y/dx²
a) x= e⁻ᵗ and y = te⁻ᵗ.
b) x = a sin³t and y= a cos³t at t=π/4.
c) x= a(t - sint) and y= a(1+ cost) at t=π/2
d) x=√3(3 sint + sin3t) and y= √3(3cost + cos3t) at t=π/3.
e) if 3px²= y²(p - x⁶), show dy/dx = y³/x³ - 2y/x.
f) If y²(1- x²)= x²+1, show that (1- x⁴)(dy/dx)²= y⁴-1.
g) If √(1- x⁴) + √(1- y⁴)= k(x²- y²), show dy/dx= x√(1- y⁴)/y√(1- x⁴).
h) If f(x)= sin(logx) and y= f{(2x+3)/(3- 2x)} show that dy/dx= 12/(9- 4x²) cos{log{(2x+3)/(3- 2x)}}.
i) If x= sect - cost, y= secⁿt - cosⁿt, then show that (x²+4)(dy/dx)²= n²(y²+4).
j)
the decreases for all real values of prove that symmetry with respect if the lion is a normal falling programming problems exactly maximum subject to constraint two Taylor sex 150 200 respectively extensity 6000 problems to minimise the labour cost to produce at least two points two numbers are selected random from 1 to 300 multiply find the probability of the product is divisible by 3% the boys and 10% the girls 60% students and boys
No comments:
Post a Comment