Friday, 24 February 2023

COMPACT REVISION (TANGENT AND NORMAL)

1) Write down the equation of the tangent at the point (4,3) on the ellipse 9x²+ 16y²=288.                  3x+ 4y = 24

2) Write down the equation of the tangent of the parabola y²=4x at (1,2).  x - y +1= 0.

3) Find the equation the normal to the curve xy= c² at (ct, c/t).    t³x -yt= c(t⁴-1)

4) Write down the equation of the normal to the parabola y²=25x at point (1,-5).                  2x- 5y = 27

5) Write down the length of the tangent drawn from an external point (a, b) to the circle x²+ y²+ 2x =0.        a²+b²+ 2a units

6) Write down the value of slope of the tangent to the parabola y²= 8(x -6) at the point (8,-4).                                   -1

7) Determine the points on the curve y= x + 1/x,  where are the tangent is parallel to the x-axis.            (1,2) and (-1,-2)

8) Find the gradient of the tangent to the parabola y²= 4x at the point (1,2).        1

9) Show that the equation of the normal to the hyperbola x = a sec k, y = b tan k at the point (a sec k, b tan k) is ax cos k + by cot k = a²+ b².

10) Find the condition that the straight line lx + my = n touches is the ellipse x²/a² + y²/b² =1.         a²l²+ b²m²= n²

11) Write down the equation of the tangent and normal of the parabola y²= 4ax at (0,0).                     x=0, y= 0

12) Obtain the equation of the normal to the hyperbola x²/b² - y²/b² =1 at (a sec k,  b tan k).         ax cos k+ by cot k = a²+ b²

13) If the straight line lx + my =1 is a normal to the parabola y²=4ax, then show that al³+ 2alm²= m².

14) Find the equation of the tangent to the hyperbola x²/a² - y²/b²= 1 at (a sec k, b tan k).                        x² - y²= 1

15) Find the equation of the tangent and normal to the ellipse 4x² +9y²= 72 at the point (3,2).   2x+ 3y = 6, 3x- 2y = 5

16) Find the equation of the tangent to the hyperabola y²= 4x+ 5, which is parallel to the straight line y= 2x +7.     y= 2x+3

17) Find the equation of the normal to the curve y= x²- x at the point (3,6). Show that this normal touches the parabola x²+ 660y=0.       x+ 5y = 33.

18) If the straight line lx + my = n is  normal to the hyperbolas x²/a² - y²/b² = 1, then show that a²/l² - b²/m²= (a²+ b²)²/n²

19) If the straight line x cos k + y sin k = p touches the ellipse x²/a² + y²/b² = 1, then prove that a² cos²k + b² sin²k = p²

20) Prove that the straight line x+ y= 2+ √2  touches the circle x²+ y² - 2x - 2y +1= 0. Find the point of contact.     (1+ 1/•2, 1+ 1/√2)

21) If the straight line lx+ my + n =0 touches the parabola y²= 4ax then prove that am² = nl.

22) Find the equation of the tangent and the normal to the curve y= x³- 3x at the point (2,2).      9x-y-16=0, x+ 9y -20= 0.

23) Show that the condition that the two curves ax²+ by² = 1 and a'x²+ b' y² =1  (ab'- a'b ≠ 0) intersects orthogonally is 1/a - 1/b = 1/a' - 1/b'.    

24) Find the equation of the tangent and normal of the curve y(x -2)(x -3) - x +7 = 0 at its point of intersection with the x-axis.        x- 20y-7=0; 20x + y=140.


No comments:

Post a Comment