Friday, 4 February 2022

EXACT DIFFERENTIAL EQUATIONS

EXACT DIFFERENTIAL EQUATION
              ****** ******* *******
Definition:
If M and N are functions of x and y, the equation M dx+ N dy=0….(1)
 is called exact when there exists a function f(x,y) of x 
and y, such that
    d[f(x,y)] = M dx + N dy,. …..(2)
WORKING RULE:
Compare the given equation with
 M dx N dy =0 and find M and N. Then find out dM/dy and dM/dx, if dM/dy=dN/dx, we conclude that the given equation is exact. If the equation is exact, then
Step. 1) Integers M with respect to x treating y as a constant.
Step. 2) Integrate with respect to y only those terms of N which do not contain x.
Step. 3) Equate the sum of these two integrals (found steps 1 and 2) to an arbitrary constant and thus we obtain the required solution. In short the solution of Exact equation
 M dx+ N dy =0 is 
∫ M dx + ∫ (in terms in N not containing x) dy = c. where c is sn arbitrary constant.

Example. 1 : 
1)(x²-4xy-2y²)dx + (y²-4xy-2x²)dy=0
here M= x²-4xy-2y² and N=y²-4xy-2x²
 dM/dy= -4x-4y and dN/dx= -4y-4x
so that dM/dy= dN/dx
hence, the given equation is exact hence its solution is.
∫ M dx + ∫(terms in N not containing x) dy = c′
∫(x² -4xy -2y²)dx + ∫y² dy =c′
x³/3 -4y(x²/2)-2y²x + y³/3 = c/3  
                                 taking c′ = c/3
Example. 2)
(2x-y+1)dx + (2y-x-1) dy= 0
comparing Mdx +N dy=0
M=2x-y+1 N= 2y-x-1
dM/dy= -1= dN/dx hence exact
∫M dx(treating y as constant) +∫(terms in N not containing x)dy =c
∫(2x-y+1)dx + ∫(2y-1)dy=0
or x² - xy+x -y² -y =c 

                    EXERCISE 
1)(4x+3y+1) dx +(3x+2y+1) dy =0

2) dy/dx = (2x-y+1)/(x+2y-3)

3) (1+eˣ/ʸ)dx + eˣ/ʸ {1-(x/y)} dy = 0

4) ₍ᵥ2ₑxy² ₊₄ₓ³₎dx ₊ ₍₂ₓᵥₑxy² ₋ ₃ᵥ²₎dy ₌ ₀

5) (ax +by+g) dx +(hx+ by +f)dy =0

6) {y(1+ 1/x) + cos y}dx + {x+ log x -x siny) dy = 0

7) xdx+ydy +(x dy - y dx)/(x² + y²)= 0 

8) x dx + y dy= a²(x dy -y dx)/(x² +y²)

9) (x dy + ydy)(x² +y²) = a²(x dy - ydx)

10) (x³+xy²+a²y)dx +(y³+yx²-a²x)dy=0

11) (x²+y²)(xdx+ydy)=xdy - ydx.

12) (r+sinθ - cosθ)dr + r(sinθ+cosθ)dθ=0

13) y sin 2x dx -(1+y²+cos²x) dy=0

14) y sin 2x dx - (y² + cos²x) dy = 0

15) (x² +y² +x)dx - ((2x² +2y² -y)dy=0

16) (4x +3y +1) dx +(3x+2y+1) dy=0

17) Find the value of constant K such that (2xeʸ +3y²)(dy/dx)+(3x²+ Keˣ)=0 is a exact . further, for this of K solve the equation.

18) (x+2y -2)dx + (2x-y+3) dy=0

19) (2ax+by)ydx + (ax+2by)x dy=0

20) (x²- ay)dx = (ax -y²) dy

21) dy/dx = (2x -y)/(x+2y - 5)

22) (x² +y² +a²)y dy +(x²+y²- a²)dx=0

23) (eˣ +1) cos x dx+ eʸsinx dy =0

24) x(x² + 3y²)dx + y(y²+3x²)dy =0

25) (a² - 2xy -y²) dx - (x+y)² dy =0

26) (3x² +6xy²) dx + (6x²y²+ 4y³)dy=0

27) (x⁴-2xy²+y⁴)dx - (2x²y -4xy² +siny) dy =0

28) (3x² + 4xy)dx + (2x² + 2y) dy =0





No comments:

Post a Comment