Sunday, 22 August 2021

TEST PAPER -1 CLASS- XII (2021-22)


1) Fill the gap: The value of the determinant  3    1975     1978
                        4    1982     1986
                        5    1995     2000  is_____
OR
State whether the following statement is true or false :
" the product of two non zero matrices must be a non-zero metrix."

2) If y= log log x, x> 1 which one of the following answer is true?
A) x dy/dx= 1  B)(x logx)dy/dx= 1
C) (logx)dy/dx= 1
D) (logx)dy/dx= x
OR
* If x= a(t - sint) and y= a(1+cos t) then which one of the following is the value of dy/dx.
A) - cot(t/2)        B) cot t
C) - tan(t/2)        D) cot(t/2)

3) If y= cos²x, then Which one of the following is the value of d²y/dx² ?
A) - 2 cos 2x    B) 2 cos 2x
C) -2 sin 2x      D) cos 2x

4) State whether the following statement is true or false:
the gradient of the tangent at the point (8,-4) to the parabola y²= 8(x-6) is - 1.
OR
* State whether the following is true or false:
f(x)= (x-1)(3-x) had an extreme value at the point x= 2.

5) The equation of the normal to the ellipse x²+ 4y²= 4 which is parallel to the line 8x+ 3y= 0 be..
A) 8x+ 3y= ±12   B) 16x+ 6y= ±15
C) 40x+ 15y= ±36  D) 24x+ 9y= ±15

6) The difference between the maximum and minimum values of the function f(x)= x³/3 - 2x² + 3x +1 is...
A) 4    B) 2     C) 1    D) 4/3.

7) The minimum value of 1/2 (7 - cos 2x) is...
A) 7/2     B) 4     C) 5/2      D) 3.

8) The length of the rectangle of maximum area that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter, is..
A) √2. B) 2  C) √2/3 D) √3 unit

9) If the tangent at the point P on the circle x²+ y²+ 6x + 6y= 2 meets the straight line 5x - 2y+6= 0 at the point Q on the y-axis, then the length of PQ is...
A) 4      B) 2√5   C) 5.     D) 3√5

10) Equations of the tangent and normal drawn at the point (6.0) on the ellipse x²/36+ y²/9= 0 respectively are...
A) x= 6, y= 0.  B) x+y= 6, y-x+6= 0
C) x= 0, y= 3  D) x= -6, y= 0

11) If the function f(x)= x²(x-2)² is an increasing function of 3, then
A) 1< x<2      B) x<0 
C)0< x<1 or x>2.  D)1< x<2 or 0< x

12) If f(x)=kx³ - 9x²+ 9x+3 is an increasing function then...
A) k< 3 B) k≤3 C) k>3 D) k is indeterminate.

13) The function f(x)= 1- x³ - x⁵ is decreasing for.....
A) 1≤ x≤5 B) all real values of x
C) x≤ 3.   D) x≥ 5

14) If v= 4πr³/3, then the rate (in cubic unit) at which v is increasing when r= 10 and dr/dt= 0.01, is ..
A) 4π.   B) π  C) 40π.   D) 4π/3

15) If the time rate of change of the radius of a sphere is 1/2π, then the rate of change of its surface area (in sq cm), when the radius is 5cm is..
A) 20      B) 10.    C) 4     D) 5

16) If f(x)= x      when 0≤ x ≤ 1
               2x -1 when x> 1 then
A) f(x) is discontinues at x= 1
B) f(x) is discontinues but not differentiable at x= 1
C) f(x) is differentiable at x= 1
D) none of these

17) Which of the following statements is not true?
A) a polynomial function is always continuous
B) a differentiable function is always continuous
C) a continuous function is always differentiable
D) log x is continuous for all x> 0

18) If the function
f(x)= (x²-9)/(x-3) when x≠ 3
          2x+a when x= 3 is continuous at x=3, then the value of a is...
A) 3      B) 6      C) 0        D) 4

19) If y= √(x+1) - √(x-1), then the value of (x²-1)d²y/dx² + x dy/dx is
A) 2y      B) -2y    C) y/4    D) y/2

20) In the mean value theorem f(b) - f(a) = (b - a) f'(c), (a<c<b), if f(x)= x³ - 3x -1, a= -11/7, b= 13/7 then the value of c is...
A) 0      B) 1      C) -1        D) ±1

21) The derivative of the function
tan⁻¹[{2x√(1-x²)}/(1-2x²)] w.r.t. the function tan⁻¹[{√(1+x²) - 1}/x] at x= 0 is...
A) 1     B) 2      C) 4           D) 8

22) If f(x)g(x)= k(a constant) and g"(x)/g'(x)= f"(x)/f'(x) + a.f'(x)/f(x) , then the value of a is...
A) 4      B) -4   C) 2    D) -2

23) If 2x= y¹⁾⁵ + y⁻¹⁾⁵ and (x²-1)y₂ + xy₁= ky, then the value of k is..
A) 5      B) -5       C) 25     D) -25

24) lim ₓ→∞{1 - 4/(x-1)}³ˣ⁻¹=
A) e⁴   B) e³    C) e¹²    D)1/e¹²

25) If the function f(x)= 4x³ + ax² + bx -1 satisfies all the conditions of Rolle's theorem in -1/4 ≤x ≤ 1 and f'(1/2)=0, then the values of a and bare
A) a=2, b =-3       B) a=1, b =-4
C) a=-1, b =4       D)  a=-4, b =-1

26) lim ₓ→∞ {(n-3)/(n+2)ⁿ is..
A) 1/e⁵ B) 1/e⁴ C) 1/e² D) 1/e

27) The value of c in Rolle's theorem f(x)= 2x³ - 5x² - 4x +3, x belongs [1/2, 3] is...
A) -1/3  B) 2/3    C) 2       D) -2

28) If sin⁻¹(x/5) + cosec⁻¹(5/4)= π/2, then the value of x is..
A) 1     B) 2      C) 3          D) 4

29) The equation sin⁻¹x - cos⁻¹x = cos⁻¹(√3/2) has
A) unique solution
B) two solution
C) no solution
D) infinite number of solutions

30) If x+y+z= xyz, then the value of (tan⁻¹x + tan⁻¹y + tan⁻¹z) is equal to
A) 3π/2   B) π    C) π/2     D) 2π

31) The value of cos⁻¹{(3+ 5 cosx)/(5+ 3cosx)} is...
A) 1/2 tan⁻¹(2 tan(x/2))
B) 2 tan⁻¹(1/2 tan(x/2))
C) tan⁻¹(1/2 tan x)
D) 2 tan⁻¹(2 tan(x/2))

32) If the determinant of the matrix a₁       b₁        c₁
            a₂        b₂        c₂
            a₃        b₃        c₃ is denoted by D, then the determinant of the matrix  a₁+3b₁- 4c₁    b₁       4c₁
              a₂ +3₂- 4c₂     b₂       4c₂
              a₃ +3b₃-4c₃    b₃       4c₃ will be
A) D B) 2D C) 3D D) 4D

33) If A= 3    - 5
               -4      2 , then the value of A² - 5A is equal to
A) I     B) 14I     C) O     D) none

34) If A= 1     2    and B= 1      2
                 2     3                 2      1
                 3     4
Then,
A) both AB and BA exist
B) neither AB nor BA exist
C) AB exists but BA does not exist
D) AB does not exist but BA exist

35) The value of the determinant b²c²         bc         b+ c
c²a²         ca         c+ a
b²a²         ab         a+ b
A) abc(a²+b²+c²)         B) 0
C) abc(bc+ca+ab)
D) (a+b+c)(a²+b²+c²) (ab+bc+ca)

36) The maximum value of the function 3cosx - 4 sinx -2 is..
A) 0   B)1   C) 4       D) 3

37) If y= cot⁻¹{(b- ax)/(a+ bx)}, then the value of dy/dx is...
A) 1  B) 1/(1+x²) C) -1 D)-1/(1+x²)

38) If y= cot⁻¹{8x⁴ - 8x²+1}, then the value of dy/dx.
A) 4/√(1-x²)       B) -4/√(1-x²)
C) 4/(1+x²)        D) - 4/(1+x²)

39) State whether sin(sin⁻¹(√2))= √2 is true or false
OR
Find y in terms of x where tan⁻¹{x/√(1- x²)}= sin⁻¹y.

40) tan⁻¹x + tan⁻¹y=π/4, then...
A) x+y+z+1=0     B) x+y+xy-1=0
C) x+y- xy+1=0   D) x+y- xy-1=0

No comments:

Post a Comment