Friday, 11 September 2020

Complex Number

COMPLEX NUMBER

1) If x= 2+ 3i and y= 2-3i, find the value of (x³-y³)/(x³+y³)
a) 1.  b) -9i/46 c) i.        d) none

2) 20/(√3-√-2) + 30/(3√-2-2√3) + 14/(2√3-√-2)
A) 0.    B) 1.     C) 2.    D) 3

3) (cos30°+isin30°)⁴/(cos20°+isin60°)²
A) 0.  B) 1.  C) 2.      D) none

4) If {(1+i)/(1-i)}³ - (1-i)/(1+i)}³ = p+iq, find (p,q)
A) 0,0.  B) 0,1. C) 1,2.   D) 0,-2

5) If x=1+3i then find the value of x⁴-5x³+18x²-34x+2
A) -20.  B) -30.    C) -18.    D) -32

6) If x= -5+2√-4, find the value of x⁴+9x³+35x²-x +4
A) 160. B) -160. C) 200 d) -200

7) If x=2+i, then x³-5x²+9x-5 is
A) 0.65   b) 0.66.  C) 0.67.   D) 0.68

8) Find the modulus of:
A) 2/(4+3i) - 1/(3-4i)
B) {(2-3i)(√5+2i)}/3i(3-2i)

9) if z₁= (√3 -1) + (√3 +1)i and 
z₂= -√3 +i, find amp z₁ , amp z₂ and (z₁z₂)

10) If z= sin 6π/5 + i(1+ cos 6π/5), find |z| and amp z.

11) If z= x+iy and 2|z -1|= |z-2|, show 3(x²+y²)= 4x

12) If arg {(z-2)/(z-4i)}= π/4, show that the locus of z in the cimplex plane is a circle.

13) Find the square root of...
a) 9i          b) 1+ 2√(-6)
c) y+√(y²-x²)
d) a² + 1/a² + 2(a+ 1/a)i + 1
e) √(28) + i √(147)

14) Show that
a) √(1+i) +√(1-i)=√(2(√2+1))
b) √(2+i3√5)= 3√(2)
c) (19 + 5√-24)¹⁾² - (19 -5√-24)¹⁾² =2√(-6)
d) (4+ 3√-20)¹⁾² + (4- 3√-20)¹⁾²=6

15) If ω be an imaginary cube root of 1, show that
a) (1-ω²)(1-ω⁴)(1-ω⁸)(1-ω¹⁰)=9
b) 1/(1+ 2ω) - 1/(1+ω) + 1/(2+ω) =0
c) (x+yω+zω²)⁴+(xω+yω²+z)⁴ +(xω²+y+zω)⁴ =0

16) If a= cosθ +i sinθ, prove that, 1+ a+ a² = (1+2cosθ)(cosθ+ isinθ).

17) If √(a+ bi + ci² + di³)= p+iq, prove (p²+ q²)²= (a-c)² + (b-d)²

17) Ley z₁= a+ ib and z₂ = p +iq be two complex numbers such that Iₙ= (z₁ ⃗z₂)=1. If ω₁=a+ip and ω₂= b + iq, show that Iₙ=(ω₁⃗ω)=1

18) If x¹⁾³=ωα¹⁾³+ ω²b¹⁾³(ω is an imaginary cube root of unity), show that, (x-a-b)³=27abx

19) Show that the conjugate complex number of (1+i)⁵ is -4(1-i)

20) Express (a+bi+ci²+di³)/(a-bi-ci²+di³)    (a,b,c,d ate real) in the form of A+iB(A, B are real)

21) If the complex number (sin x + icos 2x) and (cosx - isin2x) are conjugate to each other, then (A)x= np(B)x= (n + 1/2)π (C)x= 0 (D)x has no value. choose the correct answer.

22) z₁ and z₂ ate two complex number such that z₁ ≠ z₂ and |z₁|. show that the real part of (z₁+z₂)/(z₁-z₂) is zero.

23) The moduli of three complex numbers x,y,z are equal. if x+y+z=0, then prove that, 1/x +1/y+ 1/z=0

24) If m= x+iy and M= X + iY, prove that, x²+ y²={(X²-1)²+Y²}/{(X²+1)²+Y²}, where m= (M-1)/(M+1)

25) If the value of (3+2isinx)/(1-2isinx) is (a) purely real (b) purely imaginary, find the value of x in both cases

26) Express (1+sinx+icisc)/(1+sinx-icosx ) in the form of A+ iB and hence the argument.

27) Show that (cosπ/10+ isinπ/10) (cos2π/10+ isin2π/10)(cos3π/10+isin3π/10)(cos4π/10 + isin4π/10) = -1

28) If a= cosx + I sinx and 1+ √(1-b²) = nb, then prove that
(1+na)/2n. (1+ n/a)= 1+ b cosx.

29) If z₁ and z₂ are two complex numbers, prove that
a) |z₁+√(z₁²-z₂²)|+|z₁-√(z₁²-z₂²)| =
|z₁+z₂| +|z₁-z₂|
b) |1- ⃗z₁z₂|² - |z₁ -z₂|²=
(1-|z₁|²)(1-|z₂|²)

30) If iz³+ z² - z +i =0, show that |z|=1

31) z₁, z₂, z₃ are three complex numbers. prove that, z₁Iⱼ( ⃗z₂z₃) + z₂ + Iⱼ (⃗ ⃗z₃ z₁) + z₃ Iⱼ ( ⃗z₁ z₂)= 0 where Iⱼ(W) = imaginary part of W, where W is a complex number.

32) z₁= a+ ib and z₂= c + id are two complex numbers such that
|z₁|=|z₂|=1 and Rₑ(z₁z₂)=0, show that the two complex numbers ω₁=a+ ic and ω₂= b+ id are such that |ω₁|= |ω₂|= 1 and Rₑ (ω₁ω₂)=0

33) If z = x+iy, then show √2 |x+iy| ≥
|x| + |y|

34) Let z₁= 10+ 6i and z₂= 4+ 6i. If z be a complex number such that arg[(z - z₁)/(z-z₂)]= π/4, then prove that, |z-7 - 9i| =3√2

35) If (a₁ +ib₁)(a₂ +ib₂)(a₃ +ib₃)...(aₙ+ibₙ) prove that
a) (a₁² + b₁²)(a₂²+ b₂²)(a₃²+b₃²)... (aₙ²+ ibₙ²)= A²+ B²
b) tan⁻¹(b₁/ a₁) +tan⁻¹(b₂/a₂)+ tan⁻¹(b₃/a₃) ......+ tan⁻¹(bₙ/aₙ) =tan⁻¹(B/A)

36) If W= √(z²-1) and z= x+iy, show amp W= 1/2[tan⁻¹(y/(x+1) +
tan⁻¹(y/(x-1)]

37) If the complex number z satisfies the equations
|(z-12)/(z-8i)|= 5/4 and |(z-4)/(z-8)| = 1, find the value of z

38) If z be a compkex number, solve the equation z² + |z| = 0

39) If α²+α+2, show x³-1= (x-1)(y-α) (x-α²)

40) Show (y-z)² + (z-x)² + (x-y)²= 2(x+yω+zω²)(y+yω²+zω), where ω is an imaginary cube root of 1

41) If α be the real cube  root of β, η be the complex cube roits of m, where m is positive real number, then for any a, b, c, show that, (aβ+bη+cα)/(aη+bα+cβ) =ω², where ω is a complex cube root of unity.

42) find value of {-1+i√3)¹⁶/(1+i)²⁰} + {-2-i√(3)¹⁶/(1-i)²⁰}

43) show{(-1+√-3)/2)}ⁿ+{(-2-√-3)/2}ⁿ = 2 when n isbpositive integers and multiple of.3.
= -1 when n is any other positive integer.

44) If ω be a complex cube roit of unity, find the value of 1.(2-ω)(2-ω²) + 2.(3-ω)(3-ω²)+...+(n-1)(n-ω)(n-ω²)

45) If ω be an imaginary cube root of unity and x= a+ bω + cω², show that  x³-3ax²+3(a²-bc)x=a³+b³+c³-3abc

46) if x= a+ bω+cω², y= aω+bω² +c, z= aω²+ b + cω, show that x²/yz + y²/zx + z²/xy = 3

47) z₁, z₂, z₃ are three complex numbers such that, z₁+ z₂+ z₃= A,
z₁+ z₂ω+z₃ω²= B and
z₁ +z₂ω²+z₃ω= C, where ω is an imaginary cube root of 1. prove
|A|²+ |B|²+ |C|²= 3{|z₁|²+|z₂|²+|z₃|²

48) If x= α² + 2βη, y=β²+2ηα,
z = η²+2αβ prove that (α³+β³+η³-3αβη)= x³+y³+z³- 3xyz

49) If a and b are real numbers between 0 and 1 and the points represented by complex numbers z₁= a+ i, z₂= 1+bi and z₃ =0 form an equilateral triangle in the complex plane, then find the values of a and b.

50) If m be real, n= u+ iv, z= x+iy and ⃗n⃗,  ⃗z conjugate of n and z respectively, then show that the equatiin n( z+ ⃗z)+ ⃗n(⃗z - z) + m=0 represents two straight lines in the complex plane. Find the angle between the straight lines.

51) W= (z+1)/(z-1), where z is a complex number. If z lies on the circle |z - 1|= 2, show that W lies on a circle in the complex plane. Find the centre and radius of that circle.

52) Show that the area of the triangle formed by three complex numbers z, iz and (z+iz) in the complex plane is 1/2 |z|².

53) If the area of the Triangle formed by the complex numbers z, iz and z+ iz is ar² , where |z| = r, then find the value of the constant a.

54) If P,Q,R represent the complex numbers z₁, z₂, z₃, respectively in the complex plane and lz₁+mz₂+n z₃ =0 when l+m+n=0, show that P, Q, R are collinear.

55) If the complex number z satisfies the Equation|z - 6/z|= 2, find the greatest value of |z|.

56) Find the least value of|z + 1/z|, if |z| ≥ 2.

57) In the complex plane the condition |z + 2/z|=2 is satisfied by the moving point which is represented by the complex number z (≠0). Find the maximum distance of the point from the origin.

58) Show that the three cube roots if I, are - I, (I+√3)/2, (i-√3)/2

59) If z= 1+ sinx + I cosx, find amp z

60) If z= 1+ cos2x + isin2x,
π/2<x<3, π/2 find amp. z

61) If az+ ib ⃗z = 0, where z= x+ iy and a+b ≠0, find the value of x+y

62) If z₁, z₂ are conjugate of each other anf z₃, z₄ are conjugate of each other, show that , amp z₁/z₄ = amp. z₃/z₂.

63) show that, amp (z) - amp (-z)
       =π, when amp(z) > 0
      = -π when amp (z) < 0

64) Explain with reasons which one of the following is correct?
A) 2 + 3i > 1+ 4i
B) 6+2i > 3+ 3i
C) 5+ 8i > 5+ 7i
D) none of these (i² = -1)

65) If |z₁|=| z₂ |= 1 and
amp z₁ + amp z₂ = 0, prove that
z₁z₂ = 1

66) If the complex number z= x+ iy satisfies the Equation
|(z-5i)/(z+5i)| = 1, then z lies on
A) the x-axis.        B) the line y=5
C) a circle passing through the origin

67) Solve: |z| + z= 1 +3i, where z is a complex number.

68) For any complex number z the minimum value of |z| + |z -1| is
A) 1. B) 0.  C) 1/2.   D) 3/2









* Three complex numbers are in A P. Show that they can not be on a circle in the complex plane.
** Prove that two complex numbers z₁ and z₂, which are not zero form an equilateral triangle with the origin in the complex plane if z₁²- z₁z₂ + z₂² = 0.
***Show that the origin and the points in the complex plane which are represented by the roots of the Equation x²+pz+q= 0 form an equilateral triangle if p²= 3q.
*** If the vertices A,B,C of a right angled isosceles triangle, right angled at C, are represented by complex numbers z₁, z₂, z₃, respectively, then show that
(z₁- z₂)² = 2(z₁- z₃)(z₃ - z₂).
** Three complex numbers z₁, z₂, z₃, are such that |z₁|=|z₂|=| z₃| and they represent the vertices of an equilateral triangle in the complex plane; show that z₁+z₂+ z₃=0






No comments:

Post a Comment