TEST- 7/10/25
1) Simplify: 1+ i²+ i⁴+ i⁶.
2) Write in the form of a + ib where √-1= i
a) √-144 + √441.
b) √-27 x √12 - √-125 x √-5.
3) Find the conjugate of (2+ 3i)².
4) Find x and y if (3x -7) + 5iy = 2y +3 - 4(1- x)i.
5) Find the modulus of the complex number -12 + 5i.
6) Express the reciprocal of the complex number 3+ i √5 in the form a+ ib.
TRIGONOMETRIC FUNCTIONS
1) If cotA= 3/4, Find the value of 3 cosA + 5 sinA, where A lies in the first quadrant.
2) if cos120°= -1/2, find the value of sin120° and tan 120°.
3) prove that sec(-1680°). sin 330== -1.
4) If A, B, C, D are the angles of the cyclic quadrilateral, show that cosA + cosB + cosC + cosD= 0.
5) If tan25°= a, prove that (tan155° - tan115°)/(1+ tan155° tan115°)= (1- a²)/2a.
6) If A, B, C be the angles of a triangle, show that
{Sin(B+ C)+ sin(C+ A)+ sin(A + B)}/{sin(π+ A)+ sin(3π+B)+ sin(5π+ C)}= -1
7) prove that cosx/(1- sinx) + (1- sinx)/cosx = 2 secx.
8) If secx =√2 and 3π/2< x < 2π, find the value of
(1+ tanx + cosecx)/(1+ cotx - cosecx).
23/9/25
COMPLEX NUMBERS
1) Simplify:
a) i³⁸.
b) i¹⁵.
c) i⁻⁶.
d) 1/i.
e) (5i) × 7.
f) (3i)(4i).
g) 21/14i.
h) 5/i³.
i) √-9 + √-16.
j) (21/4) √-48 - 5 √-27.
k) √-18 . √-2.
l) 20/√-5.
2) Write the complex numbers that represent the following points in the plane.
a) (3,4).
b) (0,3).
c) (-1/3,-1/5).
Also, represent their conjugates.
3) Find the real numbers x and y if (x - iy)(3+ 5i) is the conjugate of -6 - 24i.
4) Find the modulus of
a) 5 - 12i³.
b) (1+ i)/(1- i) - (1- i)/(1+ i).
c) (2+ 3i)/(3+ 2i).
d) (2+ 5i)(3+ 4i).
e) {(3+ 2i)(1+ i)(2+ 3i)}/{(3+ 4i)(4+ 5i)}.
5) Find the solution of the equation
|1- i)|ˣ= 2ˣ.
6) Show that the points representing the complex numbers (3+ 3i),(--3 -3i) and (-3√3+ 3√3 i) on the Argand plane are the vertices of an equilateral triangle.
7) Express in the standard form a+ ib
a) 1/(3- 8i).
b) (3+ i)/(+5- 4i).
c) (1+ i)/(1- i).
d) {(1- i)/(1+ i)}²
e) {(1- i)/(1+ i)}³.
8) Show that the representative points of the complex numbers 1+ 4i, 2+ 7i, 3 + 10i are collinear.
9) if x + iy= √{(a + ib)/(c + id)} then show that (x²+ y²)²= (a²+ b²)/(c²+ d²).
No comments:
Post a Comment