Tuesday, 23 September 2025

LAST TIME REVISION - XI


COMPOUND ANGLES 

1) Find the values of 
a) sin75°.       
b) cos105°.      
c) sin15°.          
d) cos15°.       
e) cot15°.       

2) Show that: tan(A - B) tan(A - B)= (sin²A - sin²B)/(cos²A - sin²B).

3) show that: cot(A+ B) cot(A - B)= (cos²A - sin²B)/(sin²A - sin²B).

4) show that cos75° = (√3-1)/2√2.

5) show: cos80°40'. cos39°20' - sin80°40' . sin39°20' = -1/2.

6) Prove: cot2A + tanA = cosec2A.

7) If tan θ= (a sinx + b sin y)/(a cos x + b cos y) show that a sin( θ- x)+ b sin( θ- y)= 0.

8) If cosA = 3/5 and sinB= 5/13 (A, B < 90°) show that cos(A - B)= 56/65.

9) show that: cos²x + cos(60° - x)+ cos²(60°+ x)= 3/2.

10) Show that sin²A + sin²(120°- A)+ sin²(120°+ A)= 3/2.

11) Show that cos²(A - 129°)+ cos²A + cos²(A + 120°)= 3/2.

12) Find the quadrant in which the angle (x + y) terminate if sin x = 3/5; cos y = -5/13, x being in the first and y being in the second quadrant.      sin(x + y) is positive and cos(x + y) is negative, x + y is in the second quadrant 

13) Express cos θ+ √3 sin θ in the form r cos(x -  θ) and determine the value of r and x.        

14) Find the maximum and minimum values of 5 cos θ+ 12 sin θ + 12. 

15) If A+ B = 225°, show that tanA + tanB = 1- tanA tanB.     

16) If A + B + C=90°, show that tanB tanC + tanC tanA + tanA tanB = 1.

17) An angle  θ is divided into two parts x and y, such that tan x : tan y = K: 1, show that sin(x - y)= {(K -1) sin θ}/(K +1).

18) If sinx sin y - cos x cos y +1= 0, show that 1+ cot x tan y = 0.

19) If m tan( θ- 30°)= n tan( θ- 120°), show that cos2θ = (m + n)/2(m - n).

20) Show that {cos x + cos(y + z)}{cos x + cos(y - z)}= cos²x + cos²y + cos²z + 2 cosx cos y cos z -1.

21) If cos(x - y)= -1, show that cosx + cos y = 0 and sin x + sin y = 0 (x, y have real valus).       

22) If cos(b - y) + cos(y - a) + cos(a - b)= -3/2, then show that cos a + cos b + cos y = 0 and sin a + sin b sin y = 0.

23) Let 0< x < π, 0< y <π and cos x + cos y - cos(x + y) = 3/2. Show that x= y =π/3.

24) Given that tan x= 3/4, cos y= -12/13 and x and y are in the same quadrant and lie between 0° and 360°. Find without use of tables the value of 
a) sin(x - y).  
b) cos(x/y).   

25) If sin(x + y)= 4/5, cos(x - y)= 12/13 and 0< x<π/4, 0< y < π/4, find tan2x.    

26) If x and  y are the solutions of a tan θ+ b sec θ= c show that tan(x + y)= 2ac/(a²- c²).

27) If x and y are two distinct values of  θ (0≤ x<2π, 0≤ y ≤2π) satisfying the equation sin( θ+x)= (1/2) sin2x. Show that (sin x + sin y)/+cos x + cos y)= cot x.










TRIGONOMETRICAL RATIOS OF ALLIED ANGLES 

1) The value of:
a) sin(-30°).                
b) cos(-200°).           
c) sin210°.                
d) tan(-150°).          
e) sec150°.              
f) cot240°.                
g) sin(-225°).            
h) cos390°.             
i) cot315°.                
j) sec510°.              
k) sin(-300°).        
l) sin480°.               
m) tan(1860°).       
n) sin315°.             
o) tan(-570°).      
p) cos330°.           

2) Find the value of sin135° cos315° + sin420° cos330°.   

3) If tanθ = -5/11, find the values of sin θ and cosθ.       

4) For any quadrilateral ABCD, show that cos(1/2) (A+ B)+ cos(1//2)(C + D)= 0.

5) If sinθ + cosθ= 0 and θ lies in the second quadrant, find the value of θ, cosecθ, and cotθ.      

6) Find the value of θ between 0° and 360° if sin²θ= 3/4.       

7) If 0°<θ <360°, find the value of θ in the equation cotθ + tanθ = 2 secθ.   

8) Prove that tan(π/12) tan(5π/12)tan(7π/12) tan(11π/12)= 1.

9) Prove that sin²(π/8) + sin²(3π/8)+ sin²(5π/8) + sin²(7π/8)= 2.

10) Prove that the value of 
{sin³(2π- x) cos³(2π- x)}/{cos²(3π/2 + x) sin³(2π + x)} . {tan(π- x)/{cosec²(π - x)}. sec²(π+ x)}/sinx is independent of x.

11) 3[sin⁴(3π/2  - x) + sin⁴(3π+ x)]- 2[sin⁶(π/2 + x)+ sin⁶(5π - x)] is independent of x.

12) If tan25°= a, show that {(tan155° - tan 115°)/(1+ tan155°. Tan115°)}= (1- a²)/2a.

13) If sec(x - y)= 1, sec(x + y)= 2/√3, find positive magnitude of x and y.

14) Find the value of this sin{nπ + (-1)ⁿ π/3} when n is any positive integer.   

15) Show that sin θ+ sin(π+ θ)+ sin(2π+ θ)+ sin(3π+ θ)+ .....to n terms is either 0 or sin θ according to n is even or odd.      




TRIGONOMETRIC RATIOS OF SOME STANDARD ANGLES 

1) Verify: sin60° = (2tan30°)/(1+ tan30°).

2) Show that (4/3) cot²30°+ 3 sin²60° - 2 cosec²60° - (3/4) tan²30° = 10/3.

3) Find the value of: {sin(π/3)+ sin(π/6)}/{cos(π/3)+ cos(π/6)} + {sin(π/3) - sin(π/6)}/{cos(π/3) - cos(π/6)}.      

4) If  α and β positive acute angles such that sin(2α - β)= 1/√2 and tan(α +β)= 1. Find α and β.        

5) For a triangle ABC, the angle A is obtuse and sin(B + C)= √3/2 and tan(B - C)= 1/√3. Find the angles of the triangle.       

6) Solve for θ if 0≤θ ≤ 90°.
a) cosθ + √3 sinθ = 2.         60°
b) cotθ + tanθ = 2 secθ.     30°


21/10/25

TRIGONOMETRICAL RATIOS AND IDENTITIES 


1) If cosθ = 12/13, find other t-ratios of θ.

2) Prove that for real values of x, sinθ= x + 1/x is an impossible equation.

3) Eliminate θ from the given equilation x = r cosθ and y = r sinθ.       x²+ y²= r²

4) If cosecθ+ cotθ = 2+ √3, find the values of sinθ and cosθ.         1/2, √3/2

5) Prove:
a)  (3- 4 sin²θ)/cos²θ= 3- tan²θ.

b) sinθ/(cotθ + cosecθ)= 2+ sinθ/(cotθ - cosecθ).

c) (tanθ + secθ -1)/(tanθ - secθ +1)= (1+ sinθ)/cosθ.

d) sec²x tan²y - tan²x sec²y = tan²y - tan²x.

e) sinθ(1+ tanθ)+ cosθ(1+ cotθ)= secθ+ cosecθ.

f) √{(1+ sinx)/(1- sinx)} - secx =  secx -  √{(1- sinx)/(1+ sinx)}.

g) If cosθ -  sinθ= √2 sinθ show cosθ + sinθ= √2 cosθ.

h) If cosθ - sinθ= √2 sinθ show cosθ + sinθ= ± √2 cosθ.

i) If tan²x = 1+ 2 tan²y; show that cos²y = 2 cos²x.

j) Find tanx if 2 sin²x - 5 sinx cosx + 7 cos²x = 1.

k) If k tanθ= tan kθ, show that (sin²kθ)/sin²θ= = k²{1+ (k²-1) sin²θ}.

l) If a= b cosC + c cosB = c cosA + a cosC and c= a cosB + b cosA, prove that a/sinA = b/sinB = c/sinC.

m) If x= a secθ cosφ, y= b secθ sinφ and z= c tanθ, show that x²/a²+ y²/b²- z²/c²= 1.

n) If cosθ + secθ= √3, show that cos³θ+ sec³θ= 0.

o) If m= cosecA - sinA= secA - cosA then show that tanA = (n/m)¹⁾³.

p) show (1- sinA+ cosA)²= 2(1- sinA)(1+ cosA).

q) If (sinx - cosx)/(sinx + cosx)= tanθ, show that sinx + cosx =√2 cosθ.

r) If tanθ + sinθ= m and tanθ - sinθ= n, show that m²- n²= 4√(mn).

s) If sinθ+ cosecθ= 2 show that sinⁿθ + coseⁿθ= 2.

t) If tanθ= a/b, find the value of sinθ/cos⁸θ+ cosθ/sin⁸θ.       (a⁹+ b⁹)(a²+ b²)⁷⁾²/(ab)⁸

u) If secx sec y + tan x tan y = sec z show that sec x tan y + tan x sec y = ± tan z.

v) If (sin⁴θ)/a  + (cos⁴θ)/b = 1/(a + b), show that (sin⁸θ)/a³ + (cos⁸θ)/b³= 1/(a+ b)³.



LIMITS

1) lim ₓ→₂ [(x²-4)/{√(3x -2) - √(x +2)}].    

2) lim ₓ→₀ [{√(2- x) - √(2+ x)}/x].         

3) lim ₓ→₀{(xᵐ - aᵐ)/(xⁿ - aⁿ)}.        

4) lim ₓ→₃{(x⁵- 243)/(x²-9)}.     

5) lim ₓ→ₐ {√(x+2)³ - √(a +2)³}/(x - a).          

6) lim ₓ→₂ {xⁿ - 2ⁿ)/(x -2)}= 80 and n ∈N, find n.     

7) lim ₓ→₁ {(1- x⁻¹⁾³)/(1- x⁻²⁾³)}.       

8) lim ₓ→₁ {(x⁴-1)/(x -1)}= lim ₓ→ₖ{(x³- k³)/(x²- k²)}. Find the value of k.     

9) lim ₓ→₀   {(1+ x)⁶ -1 }/{(1+ x)² -1}.               





No comments:

Post a Comment