Week -1
EXPONENTIAL
1) Find the value of:
B) 9⁻³ x 16¹⁾⁴/6⁻² x (1/27)⁻⁴⁾³. 8
C) For what value of x, the relation 2ˣ = 3⁻ˣ is true. When x is 0
D) If (20)²ˣ = 49 then find the value of (20)⁻ˣ. ±1/7
E) If x= 5, y =3 then find the value of (x +y)ˣ⁾ʸ. 32
F) Find: (2²ⁿ - 3. 2²ⁿ ²)(3ⁿ⁻² - 2.3²ⁿ⁻²)/{3ⁿ⁻⁴(4ⁿ⁺³ - 2²ⁿ)}. 1/4
G) {(0.3)¹⁾³(1/27)¹⁾⁴(9)¹⁾⁶(0.82)²⁾³}/{(0.9)²⁾³(3)⁻¹⁾²(1/3)⁻²(243)⁻¹⁾⁴}. 3/10
H) (16)⁻³⁾⁴ x (32)¹⁾⁵ x 5⁰. 1/4
2) Solve:
A) 4ˣ = 8³. 9/2
B) 4ˣ⁺² = 2²ˣ⁺3 +2. -1
C) 4ˣ - 3.2ˣ⁺² + 2⁵ = 0. 2
D) xʸ = yˣ , x² = y³. 27/8, 9/4
E) 2ˣ⁺² + 2ˣ⁻¹ = 9. 1
F) 3²ˣ+ 9 = 10. 3ˣ. 2 or 0
G) 9. 812ˣ = 1/27ˣ⁻². 4/7
H) 4ˣ⁺² + 2²ˣ⁺³ = 96. 1
I) 3²ˣ⁻⁵ 9ˣ⁻² = 4. 5/2
J) 6²ˣ⁺⁴ = 3³ˣ. 2ˣ⁺⁸. 4
3) Simplify:
(A) xˡ/xᵐ)ˡ⁺ᵐ.(xᵐ/xⁿ)ᵐ⁺ⁿ.(xⁿ/xˡ)ⁿ⁺ˡ. 0
B) {(p² - 1/q²)ᵖ (p - 1/q)ᑫ⁻ᵖ/{(q² - 1/p²)ᑫ (q+ 1/p) ᑫ⁻ᵖ}. (p/q)ᵖ⁺ᑫ
C) [1- {1- (1- x³)⁻¹}⁻¹]⁻¹⁾³ when x = 0.1. 0.1
D) ⁵√(243)³. 27
E) ₓ√x = √(x)ˣ. 0, 4
F) {(2¹⁾³. 8²⁾³. 6⁻⁵⁾⁴. 3⁻³⁾⁴)/(9⁻¹.³√16)}⁻⁴. 2
G) (9.(4ˣ)²)/(16ˣ⁺¹ - 2ˣ⁺¹. 8ˣ). 9/14
4) Prove:
A) 1/(1+ xᑫ⁻ᵖ + xʳ⁻ᵖ) + 1/(1+ xᵖ⁻ᑫ + xᑫ⁻ʳᑫ) = 1
B) If aˣ = m, aʸ = n and a²= (mʸˣ)ᶻ then show that xyz = 1.
C) If 64ˣ =48 ʸ = 36ᶻ then prove 1/x + 1/z = 2/y.
D) If 2ᵃ = 3ᵇ = 12ᶜ then prove that ab = c(a+ 2b).
E) If pˣ = qʸ = rᶻ then prove pqr = 1.
F) If aˣ = bʸ = cᶻ and b² = ac, then prove 1/x + 1/z = 2/y.
G) If (3.6)ᵖ =(.36)ᑫ = (1)ʳ then prove 1/p = 1/q + 1/r.
H) If x¹⁾ᵃ = y¹⁾ᵇ = z¹⁾ᶜ and xyz = 1 then prove a+ b + c= 0.
I) If x² = y³ then prove (x/y)³⁾²+ (y/x)²⁾³ = x¹⁾² + y⁻¹⁾³.
J) If xʸ = yˣ then prove that (x/y)ˣ⁾ʸ = xˣ⁾ʸ ⁻¹ .
M) If x¹⁾³ + y¹⁾³+ z¹⁾³ = 0 then prove that (x + y+ z)³ = 27 xyz.
N) If x= 2¹⁾³ + 2⁻¹⁾³ then prove 2x³ = 6x +5.
O) a= 5 - 5²⁾³ - 5¹⁾³ then prove a³ - 15a² + 60a = 20
No comments:
Post a Comment