0 1 0 1 then Find
A) A+ B. 2 2
0 2
B) AB. 1 2
0 1
C) BA. 1 2
0 1
2) If x+ y y - z t - x z - t
5 - t 7 + x = z - y x+ z + t 1,2,3,4
3) If A= 1 2 3 & B= 0 1 2
5 4 6 3 4 8
7 8 9 5 3 6
Then Find
A) 2A+ 3B. 2 7 12
19 20 36
29 25 45
B) 3A - 4B. 3 2 1
3 -4 -14
1 12 -9
4) If A+ B= 2 2 & 2A+ 3B = 5 4
0 2 0 5 then Find the Matrix A and B. 1 2 & 1 0
0 1 0 1
5) If 2 -1
1 3 then show A²- 5A+ 7= 0.
6) If A= 1 -1 0 & B= 2 2 -4
2 3 4 -4 2 -4
0 1 2 2 -1 5 then prove that AC = CA = 6.
7) If A + I= 1 3 4
-1 1 3
-2 -3 1 then Find the value
A) A+ I. 0 3 4
-1 0 3
-2 -3 -1
B) A - I -1 3 4
-1 -2 3
-2 -3 -1
8) If A= 0 2 & B= 0 -1
1 1 1 0 then show that (A+ B)(A - B)≠ A²- B².
9) If A= 1 2 2
2 1 2
2 2 1 then Prove that A² - 4A - 5I= 0 Where I is a unit Matrix of order 3x3.
10) If A= 1 2 3 & B= 1 2
3 -2 1 2 0
-1 1 then Prove (AB)'= B' A'.
11) Show that 2 -3 -4
-1 3 4
1 -2 -3 is an idempotent Matrix.
12) 1/√2 1/√2
-1√2 1/√2 show that it is an orthogonal Matrix.
13) A= 1 0 0
-1 -2 -1
-2 3 -2 Express as the sum of a symmetric and a skew-symmetric Matrix.
14) If A= 1 2
3 5 then prove that,
A. adj A/|A| = adj A/|A| . A = I
15) A= 1 0 -1
1 2 3
0 -1 2 then Find Inverse of A. 7/8 1/8 1/4
-1/4 1/4 -1/2
-1/8 1/8 1/4
16)
B) Solve by Matrix OR Martin's Rule:
1) x+ y+ z= 4, 2x- y+ 3z= 1; 3x+ 2y- z= 1.
No comments:
Post a Comment