Wednesday, 28 July 2021

REVISION MATHS(XI)






Revision Test(XI)(complex number)
_____________&____________________


1) If x, y are real and x +iy= -i(-2+3i) then x and y are
A) 3,2 B) 2,3 C) -3,-2 D) -2, -3 E) n

2) Value of {(1+i)/(1-i)}²+ {(1-i)/(1+i)}² is
A) 0 B) 1 C) -2 D) 2 E) n

3) If z= x+ iy and | z-1| +| z +1| = 4 then 3x² + 4y² = ?
A) 10 B) 12 C) 14 D) 16 E) none

4) Modulus of √12 + 6{(1-i)/(1+i)} is
A) 4 B) √3 C) 2 √3 D)4 √3 E) n

5) If one complex cube root of unity be w then the value of w⁵ + w¹⁰ is.
A) 1  B) -1 C) w D) w² E) n

6) If x √2= 1+ √(-1) then the value of x⁶ + x⁴ + x² +2 is
A) 0 B) 1 C) -1 D) x E) none

7) Square root of -5+ 12i is
A) ±(1+2i) B) ±(2+3i) C) ±(1- 2i) D)±(2 - 3i) 

8) If ³√(x+ iy)= a+ ib where x,y a, b are all real, then the value of x/a + y/b is
A) (a²-b²) B) (a²+b²) C) 4(a²+b²) D) 4(a²- b²) E) none

9) If m, n are the imaginary cube roots of unity, then m⁴+ n⁴ +1/mn is .
A) 0 B) 1 C) -1 D) 2 E) none

10) If x= 2 - i √3 then the value of 2x⁴ - 5x³ - 3x² + 41x is
A) 0 B) 2 C) 3 D) 35







1/8/21
1) For any set A, (A')' is equals to 
A) A'     B) A    C) ∅   D) none 

2) The number of subsets of a set containing n elements is..
A) n    B) 2ⁿ -1 C) n²   D) 2ⁿ 

3) if A={1,3,5,B} and B={2,4}, then
A) 4 ∈ A  B) {4}⊂A C) B⊂A D) none

** Learn:: symmetric difference is (A-B)U(B-A)

4) the symmetric difference of A={1,2,3} and B={3,4,5} is
A) {1,2} B) {1,2,4,5} C) {4,3} D){2,5,1,4,3}   

5) Let A={x:x∈R, x≥4} and B={x ∈R: x< 5}.  then A∩B is..
A) (4,5) B) (4,5) C) (4,5) D) (4,5)      

6) If A={1,2,3,4,5}, then the number of proper subsets of A is..
A)120  B) 30  C) 31  D) 32

7) In set builder method the null set is represented by..
A) { }  B)  ∅  C) [x: x≠ x] D) {x:x= x}

8) In a City 20% of the population travels by car, 50% travels by bus and 10% travels by both car and bus. Then, persons travelling by car or bus is .
A) 80% B) 40% C) 60% D)70%

9) An investigator interviewed 100 students to determine the performance of three drinks milk, coffee and tea. The investigator reported that 10 students take all three drinks milk, coffee and tea;  20 students take milk and a coffee; 25 students take milk and tea; 12 students take tea and coffee. five student take milk only; 5 student take coffee only and 8 students take tea only. Then the number of students who did not take any of the three drinks is..
A) 10   B) 20    C) 25    D) 45

10) Two finite sets have m and n elements. The number of elements in the power set of the first set is 48 more than the total number of elements and powers set of the second set. Then, the value of m and n are..
A) 7,6  B) 6,3 C) 6,4  D) 7,4 E) 3,7 

11) In a class of 175 students the following data shows the number of students opting one or more subjects. Mathematics 100; physics 70;  chemistry 40; mathematics and physics 30; mathematics and Chemistry 28; Physics and Chemistry 23; Mathematics,Physics and Chemistry 18. how many students have offered mathematics.
A)  35 B) 48 C) 60 D) 22 E) 30

12) At the quarterly birthday party Sherry a baby boy, 40 persons choose to kiss him and 25 choose shake hands with him. 10 persons choose to both kiss him and shake hands with him. How many persons turned out at the party ?               55

13) In an examination 43% passed in maths. 48% passed in Physics and 52% passed in chemistry. only 8% students passed in all three. 14% in math and physics and 21% passed in math and Chemistry and 20% passed in Physics and Chemistry. Number of students who took the exam is 200.
A) how many student passed in maths only?                                  32
B) find the ratio of students passing in maths only to the students passing in chemistry only.      16:19
C) what is the ratio of the number of students passing in physics only to the students passing in either physics or chemistry or both? 22:80

14) In the AMS club, all the members participate either in the Tambola or the Fete, 420 participate in Fete, 350 Participate in the Tambola and 220 participate in both. How many members does the club have ?                          550

15) There are 20000 people living in Defence Colony, Gurgaon. Out of them 9000 subscribe to Star TV Network and 12000 to Zee TV Network. If 4000 subscribe to both, how many do not subscribe to any of the two?                                 3000

16) Last year, there were 3 sections in the catalyst, a mock test paper. Out of them, 33 students cleared the cutoff in section 1, 34 students clear the cutoff In section 2 and 32 cleared the cutoff in section 3, 10 students clear the cutoff in section 1and section 2, 9 cleared the cutoff in section 2 and section 3, 8 cleared the cutoff in section 1 and section 3. The number of people who cleared each section alone was equal and was 21 for each section.
A) How many cleared all the three sections ?                                      6
B) How many cleared only one of the three sections?                       63
C) The ratio of the number of students clearing the cutoff in one or more of the sections to the number of students clearing the cutoff in section 1 alone is?   78/21

17) In the Indian athletic squad sent to the Sydney Olympics, 21 athletes were in the triathlon team 26 were in the pentathlon team and 29 were in the marathon team. 14 athletes can take part in triathlon and pentathlon 12 can take part in marathon and triathlon 15 can take part in Pentathlon and marathon and 8 can take part in all the three games.
A) How many players are there in all?                                                 43
B) How many were in the marathon team only?                                   10

18) In a test in which 120 students appeared, 90 passed in history, 65 passed in political science. 75 passed in the political science. 30 students passed in only one subject and 55 students in only two. Five students passed in no subject.
A) how many students passed in all the three subjects?                       30
B) find the number of students who passed in at least two subjects.  85

19) 5% of the passengers who boarded Gauhati New Delhi Rajdhani Express on 20 February 2020, do not like coffee, tea and ice cream and 10% like all the three. 20% like coffee and tea, 25% like ice cream and coffee and 25% like icecream and tea. 55% like coffee, 50% like tea and 50% like icecream.
A) the passengers who like only coffee is greater than the passengers who like only icecream by.                                              100%
B) the percentage of passengers who like both tea and ice cream but not coffee is.                                15
C) the percentage of passengers who like at least 2 of the 3 product is.                                                  50
D) if the number of passengers is 180, then the number of passengers who like ice cream only is.                                                  18

20) In a survey survey among students at all the IIMs, it was found that 48% preferred coffee, 54% liked tea and 64% smoked. Of the total, 28% like the coffee and tea, 32% smoked and drink tea and 30% smoked and drink coffee . Only 6% did none of these. if the total number of student is 2000 then
A) The ratio of the number of students who like only coffee to the number who like only tea is.      2:3
B) The number of students who like coffee and smoking but not tea is. 240
C) The percentage of those who those who like coffee or tea but not smoking among those who like at least one of these is:.     More than 30
D) the percentage of those who like at least one of these is.              94
E) The two items having the ratio 1:2 are....                               
 Ans.Coffee and smoking only and tea only..
F) The number of persons who like coffee and smoking only and the number who like coffee only bear a ratio.                                             3:2
G) percentage of those who like tea and smoking but not coffee age is.                                                            14
21) 30 monkeys went to a picnic.
25 monkeys chose to irritate cows while 20 choose to irritate buffaloes. how many of chose to irritate both buffaloes and cows?    15
                                                      
22) In the CBSE Board exams last year 53% passed in Biology, 61% passed in English, 60% in Social Studies, 24% in Biology and English. 35% in English and Social studies, 27% in Biology and Social studies and 5% in none.
A) percentage of passes in all subject is.                                       7
B) if the number of student in the class is 200. how many passed in only one subject ?                         46
C) if the number of students in the class is 300, what will be the % change in the number passes in only two subjects, if the original number of student is 200 ?        50%
D) what is the ratio of percentage of passes in Biology and Social Studies but not English in relation to the percentage of passes in Social Studies and English but not Biology.                                        5:7

23) In the AMS Quiz held last year, participants were free to choose their respective areas from which they were asked questions. Out of 880 participants, 224 chose Mythology, 240 science and 336 chose Sports, 64 choose both sports and Science, 80 chose Mythology and sports, 40 choose Mythology and Science and 24 chose all the three areas.
A) the percentage of participants who did not choose any area is.      27.27%
B) If those participating, the percentage who choose only one area is.                   Less than 60%
C) Number of participants who choose at least two areas is:    136 
D) Which of the following areas shows a ratio of 1:8 ? 
a) Mythology and Science but not Sports: Mythology only
b) Mythology and sports but not science: science only:
    Ans: Mythology and Science but not Sports: Mythology only

E) the ratio of students choosin sports and Science but not Mythology to science but not Mythology and sports is             1:4





Sunday, 25 July 2021

AIEEE (MATH) TEST PAPER (2)

Question -1to 60 carry two marks each, for which only one option is correct. Any wrong answer will lead to deduction of 1/3 marks.

1) Let the equation of an ellipse x²/144 + y²/25 = 1. then the radius of the circle with centre (0,√2) and passing through the foci of the ellipse is
A) 9       B) 7         C) 11.    D) 5 

2) If y= 4x+3 is parallel to a tangent to the parabola y²= 12x, then to its distance from the normal parallel to the given line is
A) 213/√17 B)219/√17.  C) 211/√17 D) 210/√17 

3) In a ∆ABC, tanA and tanB are roots of pq(x²+1)= r²x then ∆ABC is
A) a right angled triangle.
B) an acute angled triangle
C) an obtuse angled triangle
D) an equilateral triangle

4) Let the number of elements of the sets A and B be p and q respectively. Then the number of the relations from the set A to the Set B is..
A) 2ᵖ⁺ᑫ B) 2ᵖᑫ. C) p+q D) pq

5) The function f(x)={tan{π(x- π/2)}}/(2+[x]²), where [x] denotes the greatest integer ≤ x, is
A) continuous for all values of x.
B) discontinuous at x= π/2
C) not differentiable for some values of x
D) discontinues at x=2

6) Let z₁, z₂ be two fixed complex numbers in the Argand plane and |z - z₁| + |z - z₂|= 2|z₁ - z₂|. Then the locus of z will be 
A) an ellipse 
B) a straight line joining z₁ and z₂
C) a parabola
D) a bisector of the line segment joining z₁ and z₂ 

7) Let S= 2/1 ⁿC₀+ 2²/2 ⁿC₁ + 2³/3 ⁿC₂ +.....+ 2ⁿ⁺¹/(n+1) ⁿCₙ. Then S equals.
A) (2ⁿ⁺¹ -1)/(n+1) 
B) (3ⁿ⁺¹-1)/(n+1).
C) (3ⁿ -1)/n               D) (2ⁿ -1)/n

8) Out of 7 consonants and 4 vowels, the number of words(not necessarily meaningful) that can be made, each consisting of 3 consonants and 2 vowels, is
A) 24800           B) 25100 
C) 25200.           D) 25400 

9) The remainder obtained when 1! + 2! + 3! + ....+ 11! is divided by 12 is...
A) 9.      B) 8        C) 7         D) 6

10) Let S denotes the sum of the infinite series 1+ 8/2! + 21/3! + 40/4! + 65/5! + ...., Then 
A) S < 8 B)S> 12 C) 8< S<12. D) S= 8

11) For every real number x, let f(x)= x/1! + 3x²/2! + 7x³/3! + 15x⁴/4! +.....
Then the equation f(x)= 0 has
A) no real solution
B) exactly one real solution.
C) exactly two real solutions
D) infinite number of real solutions.

12) the coefficient of x³ in the Infinite series expansion of 2/{(1-x)(2-x)} , for |x|< 1, is
A) -1/16 B)15/8. C) -1/8 D) 15/16

13) if a,b are the roots of the quadratic equation x²+px+ q= 0, then the value of a³+ b³ and a⁴+ a²b² + b⁴ are respectively.
A) 3pq - p³ and p⁴-3p²q+ 3q²
B) -(3q - p²) and (p²- q)(p²+ 3q)
C) pq - 4 p⁴- q⁴
D) 3pq - p³ and (p²- q)(p²- 3q).

14) A fair six faced die is rolled 12 times. The probability that each face turns up twice is equal to
A) 12!/(6!6!6¹²)   B) 2¹²/(2⁶.6¹²)
C) 12!/(2⁶.6¹²).     D) 12!/(6².6¹²)

15) Let f(x) be differentiable function in [2,7]. If f(2)=3 and f'(x) ≤5 for all x in (2,7), then the maximum possible value of f(x) at x= 7 is..
A) 7 B) 15 C) 28 D) 14

16) The value of tan π/5 +2tan 2π/5 + 4 cot 4π/5 is
A) cot π/5 B) cot 2π/5 
C) cot 4π/5 D) cot 3π/5 

17) Let R be the set of all real numbers and f: R --> R be given by f(x)= 3x² +1. Then the set f⁻¹([1,6]) is
A) {-√(5/3, 0, √(5/3)}
B) {-√(5/3, √(5/3)}
C) {-√(1/3, √(1/3)}
D) {√(5/3, -√(5/3)}

18) The area of the region bounded by the curves y= x² and x = y² is ..
A) 1/3 B) 1/2 C) 1/4 D) 3

19) The point on the parabola y²= 64x which is nearest to the line 4x+3y+ 35= 0 has coordinates.
A) (9,-24) B) (1,81)
C) (4,-16) D) (-9,-24)

20) The equation of the common tangent with positive slope to the parabola y²= 8√(3x) and hyperbola 4x² - y²=4 is
A) y= √(6x) +√2 B) y= √(6x) - √2
C) y= √(3x) +√2 D) y= √(3x) - √2 

21) Let p,q be real numbers. if a is the root of x²+ 3p²x+ 5q²= 0, b is a root of x²+ 9p²x+ 15q²= 0 and 0< a< b, then the equation x²+ 6p²x+ 10q²= 0 has a root c that always satisfies.
A) c= a/4 + b B) b< c
C) c= a/2 + b B) a< c< b

22) the value of the sum (ⁿC₁)² +(ⁿC₂)²+ .....+ (ⁿCₙ)² is
A) (²ⁿCₙ)² B) ²ⁿCₙ C) ²ⁿCₙ+1 D) ²ⁿCₙ- 1 

23) Ram is visiting a friend. Ram knows that his friend has 2 children and 1 of them is a boy. Assuming that a child is equally likely to be a boy or girl, then the probability that the other child is a girl, is..
A) 1/2 B) 1/3 C) 2/3 D) 7/10

24) Let n≥ 2 be an integer,
        Cos(2π/n) sin(2π/n) o
A= - sin(2π/n) Cos(2π/n) 0
             0 0 1
and I is the identity matrix of order 3. then 
A) Aⁿ= I Aⁿ⁻¹≠ I 
B) Aᵐ ≠ I for any positive integer m
C) A is not invertible
D) Aᵐ = 0 for positive integer m.

25) let I denote the 3x3 identity matrix and P be a matrix obtained by rearranging the columns of I. Then
A) there are six distinct choices for P and det(P)= 1
B) there are six distinct choices for P and det(P)= ±1
C) there are more than one choices for P and some of them are not invertible.
D) there are more than one choices for P and P⁻¹= I in each choice.

26) The sum of the series ∞ₙ₌₁⇒∑ sin(n!π/720) is
A) sin(π/180) +sin(π/360)+ sin(π/540)
B) sin(π/6) +sin(π/30)+ sin(π/120)+ sin(π/360) 
C) sin(π/6)+ sin(π/360) + sin(π/120) +sin(π/360)+ sin(π/720)
D) sin(π/180) +sin(π/360)

27) Let a,b be the root of x² - x -1= 0 and Sₙ = aⁿ + bⁿ, for all integers n≥ 1. then for every integer n≥ 2, A) Sₙ + Sₙ₋₁= S ₙ₊₁
B) Sₙ - S ₙ₋₁= S ₙ₊₁ 
C) Sₙ₋₁= S ₙ₊₁ 
D) Sₙ + Sₙ₋₁ = 2 Sₙ₊₁

28) In a ∆ABC, a, b, c are the sides of the triangle opposite to the angles A, B, C respectively. then the value of a³ sin(B-C) + b³sin(C-A) + c³ sin(A-B) is equal to...
A) 0 B) 1 C) 3 D) 2

29) In the Argand plane, the distinct roots of 1+z+z³+z⁴= 0 (z is a complex number) represent vertices of
A) a square    
B) an equilateral triangle
C) a rhombus
D) a rectangle.

30) the number of digit in 20³⁰¹
(Given log 2= 0.3010) is
A) 602 B) 301 C) 392 D) 391

31) If √y= cos⁻¹x, then it satisfies the differential equation (1-x²) d²y/dx² - x dy/dx = c, where c is equals to
A) 0 B) 3. C) 1 D) 2

32) the integrating factor of the differential equation (1+x²) dy/dx + y = ₑ tan⁻¹x is..
A) tan⁻¹x B) 1+x² C)ₑ tan⁻¹x D) log(1+x²)

33) The solution of the equation log₁₀₁ log₇{√(x+7)+ √(x)}= 0 is
A) 3 B) 7 C) 9 D) 49

34) If m,n are the roots of ax²+bx+ c= 0(a≠0) and m+ h, n+ h are the roots of px²+ qx +r= 0 (p≠0) then the ratio of the squares of their discriminants is
A) a²: p² B) a:p² C) a²: p D) a: 2p

35) Let f(x)= 2x²+ 5x+1. If we write f(x) as f(x)=a(x+1)(x-2)+ b(x-2)(x-1)+ c(x-1)(x+1) for real numbers a,b,c, then
A) there are infinite number of choices for a,b,c
B) only one choice for a but infinite number of choices for b and c
C) exactly one choice for each of a,b,c 
D) more than one but finite number of choices for a,b,c.
 
36) Let f(x)=x+ 1/2. then the number of real values of x for which the three unequal terms f(x), f(2x), f(4x) are in H. P. is
A) 1. B) 0 C) 3 D) 2

37) The function f(x)= x²+ bx + c, where b and c real constants, describes
A) one to one mapping
B) onto mapping
C) not one to one but onto mapping
D) neither one to one nor onto mapping

38) suppose that the equation f(x)= x²+ bx + c= 0 has two distinct real roots m, n. the angle between the tangent to the curve y= f(x) at the point ((m+n)/2, f(m+n)/2) and the positive direction of the x-axis is..
A) 0° B) 30° C) 60° D) 90°

39) The solution of the differential equation y dy/dx= x[y²/x² + ¢ (y²/x²)/¢'(y²/x²)] is (where c is a constant)
A) ¢ (y²/x²)= cx
B) x¢ (y²/x²)= x
C) ¢ (y²/x²)= cx²
D) x²¢ (y²/x²)= c

40) Let f(x) be a differentiable function and f'(4) = 5. then
 lim ₓ→₂ {f(4) - f(x²)}/(x-2) equals
A) 0. B) 5 C) 20. D) -20

41) The value of lim ₓ→ₐ ∫ Cos(t²)/x sinx dt at (x²,0) is .
A) 1. B) -1 C) 2 D) log 2

42) The range of a function y= 3 sin{√(π²/16 - x²)} is
A) (0,√3/2), B) (0,1) C) 0,3/√2) D) (0,∞)

43) There is a group of 265 persons who like either singing or dancing or painting. In this group 200 like singing, 110 like dancing and 55 like painting. If 60 persons like both singing and dancing, 30 like both singing and painting and 10 like all three activities, then the number of persons who like only dancing and painting is
A) 10 B) 20 C) 30 D) 40

44) The curve y= (cosx +y)¹⁾² satisfy the differential equation
A) (2y-1)d²y/dx² +2(dy/dx)²+ cosx= 0
B) d²y/dx² -2y(dy/dx)²+ cosx= 0
C)(2y-1)d²y/dx² -2(dy/dx)²+ cosx= 0 
D) (2y-1)d²y/dx² - (dy/dx)²+ cosx= 0

45) suppose that z₁, z₂, z₃ are three vertices of an equilateral triangle in the Argand plane. Let a= 1/2 (√3 +i) and b be a non-zero complex number, The points az₁ + b, az₂+ b, az₃ + b will be..
A) the vertices of an equilateral triangle.
B) the vertices of an isosceles triangle
C) collinear 
D) the vertices of a scalene triangle.

46) if lim ₓ→₀ (2a sinx - sin2x)/tan³x exist and is equals to , then the value of a is...
A) 2 B) 1 C) 0 D) -1

47) If f(x)= 2x²+1, x ≤1
                   4x³ -1, x > 1 then ²₀∫f(x) dx is
A) 47/3 B) 50/3 C) 1/3 D) 47/2

48) The value of |z|² + |z -3|² + |z-i|² is minimum when z equals.
A) 2 - 2i/3. B) 45+3i
C) 1+ i/3 D) 1 - i/3

49) The number of solution/s of the equation √(x+1) - √(x-1)= √(4x-1) is are..
A) 2. B) 0 C) 3. D) 1

50) the value of λ for which the curve (7x+5)²+ (7y+3)²= λ²(4x+3y-24)² represent a parabola is..
A) ± 6/5 B) ±7/5 C) ±1/5 D)±2/5

51) If sin⁻¹(x/13)+ cosec⁻¹13/12 = π/2, then the value of x is 
A) 5 B) 4 C) 12 D) 11

52) The straight lines x+y= 0, 5x +y= 4 and x+5y= 4 form
A) an isosceles triangle
B) an equilateral triangle
C) a scalene triangle
D) a right angled triangle

53) if ²₀ ∫ ₑx⁴ (x - k)dx= 0, then k lies in the interval.
A) (0,2) B) (-1,0) C) (2,3) D) (-2,-1)

54) If the coefficient of x⁸ in (ax² + 1/bx)¹³ is equals to the coefficient of 1/x⁸ in (ax- 1/bx²)¹³, then a and b will satisfy the relation.
A) ab+1= 0 B) ab= 0 C) a= 1-b D) a+b= -1  

55) the function f(x)= a sin |x|+ bₑ|x| is differentiable at x= 0 when
A) 3a+b= 0 B) 3a-b= 0 
C) a+b= 0 D) a- b= 0 

56) If a ,b ,c are positive numbers in a GP, then the roots of the quadratic equation (loga)x² - (log b)x + (log c)= 0 are
A) -1 and (log c)/(log a)
B) 1 and (log c)/(log a)
C) 1 and (log c)
D) -1 and (log a)

57) Let R be the set of all real numbers and f: [-1, 1] --> R be defined by
f(x) = x sin(1/x), x ≠ 0
                 0, x= 0 then
A) f satisfy the conditions of Rolle's theorem on [-1,1]
B) f satisfy the conditions of lagrange mean value theorem on [-1,1]  
C) f satisfy the conditions of Rolle's theorem [0, 1]
D) f satisfies the conditions of Lagrange mean value theorem on [0, 1] 

58) let z₁ be a fixed point on the circle of radius 1 centred at origin in the Argand plane and z₁≠±1. considered an equilateral triangle inscribed in a circle with z₁, z₂, z₃ as the vertices taken in the counterclockwise direction. Then z₁z₂z₃ is equals to 
A) z₁² B) z₁³ C) z₁⁴ D) z₁

59) Suppose that f(x) is a differentiable function such that f'(x) is continuous, f'(0)=1 and f"(0) does not exist. Let h(x)= xf'(x). Then 
A) g'(0) does not exist
B) g'(0)= 0
C) g'(0)= 1
D) g'(0)= 2

60) Let [x] denote the greatest integer less than or equal to x for any real number is equals x. Then 
lim ₓ→∞ [n √2]/n ie equal to
A) 0 B) 2 C) √2. D) 1

CATEGORY II

Q.61 to Q.75 carry two mark each, for which only one option is correct, any wrong answer will lead to deduction of 2/3 Marks.

61) We define a binary relation ¢ on the set of all 3x3 real matrices as A ¢ B if and only if there exist invertible matrices P and Q such that B= PAQ⁻¹x. The binary relation ¢ is..
A)neither reflexive nor symmetric 
B)reflexive and symmetric but not transitive
C) symmetric and transitive but not reflexive
D) an equivalence relation

62) The minimum value of 2ˢᶦⁿ ˣ+ 2ᶜᵒˢ ˣ is..
A) ₂2 - 1/√2 B) ₂ 2+ 1/√2 C) ₂√2 D) 2

63) for any real numbers a and b, we define aRb if and only if sec²a - tan²b= 1. The relation R is
A) reflexive but not transitive
B) symmetric but not reflexive
C) both reflexive and symmetric but not transitive.
D) an equivalence relation.

64) A relation starting from a point A and moving with a positive constant acceleration along a straight line reaches another point B in time T. suppose that initial velocity of the particle is u> 0 and P is the midpoint of the line AB. if the velocity of the particle at point P is v₁ and if the velocity at time T/2 is v₂, then 
A) v₁= v₂ B) v₁> v₂ C) v₁< v₂ D) v₁= 1/2 v₂

65) Let tₙ denote the nth term of the Infinite series 1/1!+10/2!+21/3!+34/4!+49/5!+... Then lim ₓ→∞ tₙ is..
A) e B) 0 C) e² D) 1

66) let a, b denote the cube roots of unity other than 1 and a≠ b, Let s= ³⁰²ₙ₌₀ ∑ (-1)ⁿ (a/b)ⁿ. Then the value of s is
A) either -2ω or -2ω²
B) either -2ω or 2ω²
C) either 2ω or -2ω²
D) either 2ω or 2ω²

67) The equation of hyperbola whose coordinates of the foci are (±8,0) and the length of the latus rectum is 24 unit, is
A) 3x²-y²= 48 B) 4x²-y²= 48
C) x²- 3y²= 48 D) x²- 4y²= 48

68) Applying Lagrange's mean value theorem for a suitable function f(x) in [0,h], we have f(h) = f(0) + hf'(¢h), 0< ¢< 1. then for f(x) = cosx, the value of lim h→0⁺ is..
A) 1. B) 0. C) 1/2. D) 1/3

69) let Xₙ = {z= x+iy : |z²| ≤ 1/n} for all integers n≥ 1. Then ∞ₙ₌₀∩ Xₙ is...
A) a singleton set 
B) not 1 finite set 
C) an empty set 
D) a finite set with more than one elements

70) suppose M= π/2₀ ∫ cosx/(x+2) dx, N= π/4₀∫ (sinx cosx)/(x+1)² dx. then the value of (M- N) equal
 A) 3/(π+2). B) 3/(π -4)
C) 4/(π-2). D) 3/(π+4)

71) cos 2π/7 + cos 4π/7 + cos 7π/7 
A) is equal to zero 
B) lies between 0 and 3
C) is a negative number 
D) lies between 3 and 6.

72) A student answers a multiple choice questions with 5 alternatives of which exactly one is correct. The probability that he knows the correct answer is p, 0< p < 1. if he does not know the correct answer, he randomly ticks one answer. Given that he has answered the question correctly, the probability that he did not take the answer randomly, is
A) 3p/(4p+3). B) 5p/(3p+2)
C) 5p/(4p+). D) 4p/(3p+1)

73) A poker hand consists of five cards are drawn at random from a well shuffled pack of 52 cards. then the probability that the poker hand consists of a pair and a triple of equal face values (for example, 2 sevens and 3 kings or 2 aces and 3 queens, etc) is..
A) 6/4165. B) 23/4165 
C) 1797/4165 D) 1/4165

74) Let f(x) = max{x + |x|, x- [x], where [x] denotes the greatest integer ≤ x. Then the value of ³₋₃∫ f(x) dx is...
A) 0 B) 51/2. C) 21/2 D) 1

75) The solution of the differential equation dy/dx + y/(x logx) = 1/x under the condition y= 1 when x= e is
A) 2y= logx + 1/logx
B) y= logx + 2/logx
C) y logx= logx + 1
D) y= logx + e

CATEGORY III
Q.76 to Q.80 carry two marks each, for which one or more than one options will lead to maximum mark of two on pro rata basis. there will be no negative marking for these questions. however, any marking of wrong option will lead to award of zero mark against the respective question -- irrespective of the number of correct options marked.

76) Let f(x)= ˣ₀ ∫ |1- t| dt, x>1
                               x -1/2, x ≤ 1

A) f(x) is continuous at x=1
B) f(x) is not continuous at x=1
C) f(x) is differentiable at x= 1
D) f(x) is not differentiable at x=1

77) The angle of intersection between the curves y= [|sinx|+ |cosx|] and x²+y²= 10, where [x] denotes the greatest integer ≤ x, is
A) tan⁻¹(3). B) tan⁻¹(-3)
C) tan⁻¹(√3) D) tan⁻¹(1/√3)

78) If u(x) and v(x) are two independent solutions of the differential equation d²y/dx² + b dy/dx + cy = 0, then additional solution/s of the given differential equation is(are)
A) y= 5 u(x)+ 8 v(x) 
B) y= c₁{u(x)- v(x)}+ c₂v(x), c₁ and c₂ are arbitrary constants.
C) y= c₁u(x) v(x)}+ c₂ u(x)/v(x), c₁ and c₂ are arbitrary constants.
D) y= u(x) v(x)

79) for the two events A and B, let P(A)= 0.7 and P(B)= 0.6. The necessarily false statement(s) is/ are
A) P(A ∩B)= 0.35
B) P(A ∩B)= 0.45
C) P(A ∩B)= 0.65
D) P(A ∩B)= 0.28

80) If the circle x²+ y² + 2gx + 2fy + c= 0 cuts the three circles x²+ y² -5 = 0 , x²+ y² - 8x -6y + 10= 0 and x²+ y² -4x + 2y -2= 0 at the extremities of the diameters, then
A) c= -5 B) fg= 147/25
C) g+ 2f= c+2 D) 4f= 3g.

Monday, 19 July 2021

AIEEE (MATH) TEST PAPER- 1.

PAPER - 1 2013 Main

1) ∫⁴₁ [x - 0.4] dx equals, (where [ . ] Denotes fractional part of x)
a) 1.3 b) 6.3 c) 1.5 d) 7.5

2) The value of ∫ 8ˣ/₂[3x] dx. (Where [.] denotes GIF) is equal to 
a) [x]/ln2 b) [x]/ln4 c) 2[x]/ln2 d) [x]/ln8

3) If Sₖ ∫ sin x (i⁴x) where i= √-1 then ⁴ⁿ⁻¹ₖ₌₁∑ Sₖ (n∈N) is 
a) -cos x+ c b) cosx + cc) 0 d) i⁴ⁿ sinx + c 

4) let f(xy)= f(x) ∀ x > 0, y> 0 and f(1+x)= 1+ x {1+ g(x)} where lim ₓ→₀g(x)=0 then ∫ f(x)/f'(x) dx =
a) x²/2+ c b) x³/3 + c c) x + c d) x⁴/4 + c

5) ∫ (x + x²⁾³ + x¹⁾⁶)/{x(1+ x¹⁾³) dx equals 
a) (3/2) x²⁾³ + tan⁻¹(x¹⁾⁶) + c
b) (2/3) x²⁾³ + 6 tan⁻¹(x¹⁾⁶) + c
c) (3/2) x²⁾³ - 6 tan⁻¹(x¹⁾⁶) + c
d) (3/2) x²⁾³ + 6tan⁻¹(x¹⁾⁶) + c

6) ∫ dx/{(1+ √x) √(x - x²)} equals 
a) (1+√x)/(1- x)² + c
b) (1+√x)/(1+ x)² + c
c) (1- √x)/(1- x)² + c
d) 2(√x -1)/√(1- x) + c

7) ∫ dx/{x²²(x⁷-6)} = A{logu⁶+ 9u²- 2u³- 18u}+ c, then
a) A= 1/9072, u= {(x⁷-6)/x⁷}
b) A= 1/54432, u= {x⁷/(x⁷-6)}
c) A= 1/54432, u= {(x⁷-6)/x⁷}
d) A= 1/9072, u= {x⁷/(x⁷-6)}

8) If y(x - y)²= x, then ∫ dx/(x - 3y)= 
a) (1/2) log|(x + y)²- 1|+ c
b) (1/2) log|(x - 2y)²- 1|+ c
c) (1/2) log|(x + 2y)²- 1|+ c
d) (1/2) log|(x - y)²- 1|+ c

9) ∫ eˣ(2- x²)dx/{(1- x)√(1- x²)}=
a) eˣ √{(1- x)/(1+ x)}+ c
b) eˣ √{(1 + x)/(1- x)}+ c
c) eˣ/(1- x) + c
d) eˣ /(1+ x)}+ c

10) ∫ (cos²x + sin2x)/(2cosx - sinx)² dx = cosx/(2cosx - sinx)+ Ax + B ln|2cosx - sinx|+ c then (A, B) =
a) (-1/5,-2/5) b) (1/5, 2/5) c) (2/5,1/5) d) (-1/√5,-2/√5)

11) The area bounded by y= x², y= {x +1}, 0 ≤ x < 1 and the y-axis is (where {.} denotes the GIF)
a) 1/3 sq.unit 
b) 2/3 sq.unit
c) 1 sq.unit
d) 7/3 sq.unit

12) Let f(x)= x + sinx and g(x) be the inverse of g(x). Then area bounded by g(x) and the ordinates at x= 0, x = π is
a) π²/2 +2 b) π²+2 c) π²/2 - 2 d) π² - 2

13) The area enclosed between the curves y= logₑ(x + e), x= logₑ(1/y) and x-axis is 
a) 2 b) 1 c) 1/e d) 4

14) If f(x) and ∅(x) are continuous functions on the interval [0,4] satisfying f(x)= f(4-x),
∅(x) + ∅(4- x) = 3 and ⁴₀∫ f(x) dx= 2 then ⁴₀∫ f∅(x) dx=
a) 0 b) 1 c) 2 d) 3

15) The value of ∫ [cosx] dx at (π,0), (where [,] is the greatest integer funy) is 
a) π/2 b) 0 c) π d) -π/2

16) The value of ∫ (sinx + cosx). √{eˣ/sinx} dx is equal to
a) 2 √(ₑπ/2) b) √(ₑπ/2) c) 2 √(ₑπ/2) . cos1 d) (1/2) (ₑπ/4) 

17) If the solution of differential equation dy/dx = (ax +3)/(2y + f) representa a circle of non zero radius then 
a) a= 2, 9 + 4f² > 4c
b) a= - 2, 9 + 4f² < 4c
c) a= 2, 9 + 4f² < 4c
d) a= - 2, 9 + 4f² > 4c

18) solution of (x eʸ⁾ˣ - y sin(y/x))dx + x sin(y/x) dy=0
a) logx = c + (1/2) ₑ⁻ʸ⁾ˣ (sin(y/x)+ cos(y/x))
b) logx = c + (1/2) ₑʸ⁾ˣ (sin(y/x)- cos(y/x))
c) logx = c + (1/2) ₑʸ⁾ˣ (sin(y/x)+ cos(y/x))
d) logx = c + (1/2) ₑ⁻ʸ⁾ˣ (sin(y/x)- cos(y/x))

19) The the solution of differential equation 
xdy + y dy + (xdy - ydx)/(x²+ y²)= 0 is
a) y= tan{(c - x - y)/2}
b) y= xtan{(c - x² - y²)/2}
c) y= xtan{(c + x² +y²)/2}
d) y= xtan{(c + x² - y²)/2}

20) The differential equation of all circles in a plane must be
a) y₃(1+ y²₁) - 3y₁y₂²= 0
b) of order 3 and degree 3
c) of order 3 and degree 2
d) y₃(1- y²₁) - 3y₁y₂²= 0

21) If the population of a country doubles in 50 years in how many years will it becomes the original. assume the rate of increase is proportional to the number of inhabitants 
a) 75 b) 50log₂3 c) 50 logy₃2 d) 100

22) The equation of the curve not passing through the origin and having the portion of the tangent included between the co-ordinate axis is bisected at the point of contact is
a) a parabola 
b) an ellipse or a straight line 
c) a circle or an ellipse 
d) a hyperbola or a straight line

23) if the differential equation corresponding to the family of curves, y= (A + Bx)e³ˣ is given by d¹y/dx⅖ = 4 dy/dx + by then (a - b) equals 
a) 9 b) 12 c) 15 d) 18

24) The order of differential equation whose general solution is given by 
y= (c₁ + c₂) sin(x + c₃) - c₄ ₑx+c₅ is 
a) 5 b) 4 c) 2 d) 3

25) If ∆= a² -(b - c)², where '∆' is area of triangle ABC, then tanA=
a) 15/16 b) 8/15 c) 8/17 d) 1/4

26) In ∆ ABC, if 'r' is in-radius and 'R' is circum-radius, then
a) R≥ 2r b) R≤ 2r c) R> 2r d) R< 2r

27) AD is a median of the ∆ ABC. If AE and AF are medians of the triangle ABD and ADC respectively, and AD= m₁, AE= m₂, AF= m₃, BC= a then a²/8 is equals to 
a) m₁²+ m₃²- 2m₁² b) m₁²+ m₂² - 2m₃²
c) m₂¹+ m₃¹ - m₁² d) m₁²- m₂² - 3₃²

28) If cosB cosC + sinB sinC sin²A = 1, then 
a) angle A= 45°
b) angle A= 60°
c) angle A= angleB
d) angleA= 90°, angleB= angle C

29) in triangle ABC, a²+ b²+ c²- ac - √3 ab =0, then the triangle is necessarily 
a) isosceles b) right angled c) obtuse angled d) equilateral 

30) The sides of a triangle are in AP and its area is 3/5 th of an equilateral triangle of same perimeter then its sides are in the ratio.
a) 1:2:√7 b) 2:3:5 c) 1:6:7 d) 3:5:7

31) in a triangle ABC, if (a+ b + c)(b + c - a)= k be then
a) k< 0 b) k>6 c) 0<k <4 d) k> 4

32) In ∆ ABC if a= √3, b= 2, angle C=30° then r=
a) (√3-1)/2 b) (√3 +1)/2 c) (√3-1)/4 d) √2 +1

33) In a ∆ ABC, if c= (a - b) secθ, then tanθ is equal to 
a) 2 √(ab)/(a - b) cos(C/2)
b) 2 √(ab)/(a - b) sin(C/2)
c) 2 √(ab)/(a - b) tan(C/2)
d) 2 √(ab)/(a + b) cot(C/2)

34) In a ∆ ABC, if cosA+ cosB + cosC = 7/4 then R/r= 
a) 4/3 b) 3/4 c) 2/3 d) 3/2

35) If O is the circumcenter of the triangle ABC and R₁, R₂, R₃ and R are the radii of the circumcircles of the triangle OBA,OCA,OAB and ABC respectively, then a/R₁ + b/R₂ + c/R₃ is equal to 
a) abc/R b) abc/R³ c) abc/R⁴ d) abc/R²

36) If p,q are the length ps of the internal bisectors of the angles A, B, C of a ∆ ABC respectively, then (1/p) cos(A/2) + (1/q) cos(B/2) + (1/r) cos(C/2)=
a) 1/a + 1/b + 1/c
b) 1/c + 1/a - 1/b
c) 1/a + 1/b - 1/c
d) 1/b + 1/c - 1/a

37) If in a ∆ abcr, angles A, B, C are in AP, then (a+ c)/√(a²- ac + c²)=
a) 2sin{(A - C)/2}
b) sin{(A - C)/2}
c) 2cos{(A - C)/2}
d) cos{(A - C)/2}

38) Three circles , whose radii are a,b,c touch each other externally and the tangents at their points of contact meet in a point. Then the distance of this point from either of points of contact is 
a) √{abc/(a+ b+ c)}
b) √{abc/(a- b- c)}
c) 2 √{abc/(a+ b+ c)}
d) √{(a+ b+ c)/abc}

39) The equation of the line x+ y+ z -1=0, 4x+ y - 2z + 2 =0, written in symmetrical form is
a) (x+1)/1= (y-2)/-2=(z - 0)/1
b) x/1= y/-2=(z - 1)/1
c) (x-(1/2))/2 = (y+2)/-2=(z - 2)/2
d) (x-1)/2= (y+2)/-1=(z - 0)/2

40 A plane which passes through the point (3,2,0) and the line!(x-4)/1= (y-7)/5 =(z - 4)/4 is
a) x- y+ z -1=0
b) x+ y+ z -5=0
c) x- 2y- z -1=0
d) 2x- y+ z -5=0

41) Equation of the line of shortest distance between the lines , x/2 = y/-3=z/1 and (x -2)/3 = (y- 1)/-5 =(z +2)/2 is
a) 3(x -21) = 3y + 92) = 3z - 32
b) (x - 62/3)/1/3 = (y- 31)/1/3 =(z + 31/3)/1/3
c) (x - 21)/1/3 = (y- 92/3)/1/3 =(z + 32/3)/1/3
d) (x -2)/1/3 = (y +3)/1/3 =(z - 1)/1/3

42) If a line with direction ratios 2: 2: 1 intersects the line (x-7)/3 = (y-5)/2=(z - 3j)/1 and A and B then AB=
a) √2 b) 2 c) √3 d) 3

43) The length of the projection of the line segment joining P(-1,2,0) and (1,-1,2) on the plane 2x - y - 2z =4 is
a) 1 b) 17 c) 5 d) 4

44) The corner of a tetrahedron are A(3,4,2), B(1,2,1), C(4,1,3), D(-1,-1,3). The height of A above the base BCD is
a) 27/√237 b) 23/√237 c) 20/√237 d) 27/√247

45) a mirror and a source of light are situated at the origin O and at a point on OX respectively. a ray of light the source strikes the mirror at O and is reflected. if the D. R's of the normal to the plane mirror are (1,-1,1) then D. C's for the reflected ray are
a) 1/3,2/3,2/3
b) 1/3,-2/3,-2/3
c) -1/3,-2/3,-2/3
d) -1/3,-2/3,2/3

46) The plane lx + my =0 is rotated about its line of intersection with xOy plane through an angle θ. Then the equation of the plane is lx + my + nz=0 where n is 
a) ±√(l²+ m²) cosθ
b) ±√(l²- m²) sinθ
c) ±√(l²+ m²) tanθ
d) ±√(l²- m²) secθ

47) If the position vectors of the vertices of an equilateral triangle are 72i + 56 √3j, xi + yj (y>0) and the third vertex is the original itself, then the values of x and y are respectively---
a) 32, 8√3
b) -32, 32√3
c) -48, 64√3
d) 48, 16√3

48) In a ∆ ABC , angle A= 30°, H is the orthocentre and D is the midpoint of BC, segment HD is produced to T, such that HD= DT. The ratio of AT/BC equals to 
a) 1:2 b) 2:1 c) 3:2 d) 2:3

49) If 2a+ 3b + 5c=0 then the area of the triangle whose sides are represented by the vectors sides are represented by the vectors a, b, c is
a) 0 b) 3 c) 5 d) 8

50) If i, j, k are unit ortho-normal vectors and a is a vector, such that a x r = j, then a . r is equal to, for any vector r
a) 0 b) 1 c) -1 d) arbitrary scalar 

51) If a, b are perpendicular vectors, then the projection of the vector { la/|a| + mb/|b| + n(axb)/|axb|} along the angle bisector of the vector a and b may be given as
a) (l²+ m²)/√(l²+ m²+ n²)
b) √(l²+ m²+ n²)
c) √(l²+ m²)/√(l²+ m²+ n²)
d) (l+ m)/√2

52) If a= i + j + k, a.b=1 and axb = j - k, then b=
a) I b) i - j + k c) 2j - k d) 2i

53) In a parallelogram ABCD , |AB|= a, |AD|= b and|AC|= c, the value of DB. AB is 
a) (3a²+ b²- c²)/2 
b) (a²+ 3b²- c²)/2 
c) (a²- b²+ 3c²)/2 
d) (a²+ 3b² + c²)/2 

54) Let a= i + j and b= 2i - k the point intersection of lines rxa= bxa and rxb= axb is
a) - i + j + k b) 3i - j + k c) 3i + j - k d) i - j - k 

55) If a,b and c are three non coplaner unit vectors each inclined with other at an angle of 30° then the volume of tetrahedron whose edges are a,b, c is (in cubic units)
a) √{3(√3-5)}/12
b) (3√3+5)/12
c) (5√2+3)/12
d) 3√3/8

56) Let a,b,c be three mutually perpendicular vectors with same magnitude. If x satisfies the relation ax {(x - b) x a} + b x {(x - c) x b}+ c x {(x - a) x c}=0 then x=
a) (1/3) (a+ b + c)
b) (1/2) (a+ b + c)
c) (1/2) (a+ b -2c)
d) (1/2) (2a+ b - c)

57) For any vector u and v
(1- u.v)²+ 1u+ v+ (ux v) l²= 
a) (1- |u|²)(1- |v|²)
b) (1 + |u|²)(1+ |v|²)
c) (u+ v)²
d) |u + v|²

58) If a,b,c are unit vector equally inclined to each other angle θ(≠0) then the angle between a x b and the plane containing b and c is
a) sin⁻¹(tan(θ/2). |Cotθ|)
b) cos⁻¹(tan(θ/2). |Cotθ|)
c) cos⁻¹(cot(θ/2). |Tanθ|)
d) sin⁻¹(cot(θ/2). |tanθ|)

59) If a.a= b.b= c.c= 1; a.b= 1.2, b.c =1/√2; c.a=√3/2 then [a b c] is 
a) (√3-1)/2√2
b) (√3+1)/2√2
c) √(√6+2))/2
d) √(√6-2))/2

60) let AD be the angular bisector of the angle A of ∆ abcr, then AD= θ AB + β AC, where 
a) θ = |AB|/|AB+ AC|, β= |AC|/|AB+ AC|
b) θ = (|AB| + |AC|)/|AB|, β=(|AB + |AC|)/|AC|
c) θ = |AC|/|AB+ AC|, β= |AB|/|AB+ AC|
d) θ = |AB|/|AC|, β= |AC|/|AB|

61) OABC is a tetrahedron in which O is the origin and position vector of points A, B, C are i+ 2j + 3k; 2i + θ j + k and I + 3j + 2k respectively. A value of θ for which shortest distance between OA and BC is √(3/2) is 
a) 1/2 b) 4/3 c) 3/2 d) 3

62) Let a= 3i + 2βj+ 5k, b= i+ 2j + 5k; c= i+ βj - 3k, d= i+ j + 4k. L₁ and K₂ be the line passing through respectively the points with position vectors a and c and parallel to respectively b and d. If they do not meet, then the can not teke the value
a) 3 b) 1 c) 2 d) 4

63) Let P be the point of intersection of the three planes r. n₁= 0, r.n ₂ =1 and r.n₃=2 where n₁,n ₂ and n₃ are along 2i+ k, 5i -12j and 3i+ 4k respectively then the projection of OP on z axis (O being origin)
a) 3/2 b) 5/2 c) 7/2 d) 11/2

64) Let A be vector parallel to line up intersection of planes P₁ and P₂ through. P₂ is parallel to the vectors 2i + 3k and 4j - 3k and P₂ is parallel to j - k and 3i + 3j, then the angle between vector A and 2i + j - 2k is
a) π/2 b) π/4 c) π/6 d) π/3

65) Factors acting on a particle have magnitude of 5, 3, and 1 units and act in the direction of the vectors 6i+ 2j+ 3k, 3i- 2j + 6k and 2i - 3j - 6k respectively. They remain constant while the particle is displaced from the point A(2,-1,-3) to B( 5,-1,1). The work done is equal to 
a) 31 units b) 33 units c) 34 units d) 44 units 

66) The vector OA= -2i + j + 2k turned by a right angle about origin so that it passes through j+ k, then the vector in new position is
a) 2i - j + 2k b) (3/√5) (-2j + k) c) 3(2i + 2j +k) d) (3/√2) (i + k)

67) Let a= i + 2j + k , b= i - j + k; c= i + j - k. A vector coplanar to a and b has a projection along c of magnitude 1/√3, then the vector is 
a) 4i - j + 4k b) 4i + j - 4k c) 2i + j -2k d) 2i - j -2k

68) Considered a tetrahedron with faces F₁, F₂, F₃, F₄. Let u₁, u₂ ,u₃, u₄ be the vector whose magnitudes are respectively equal to areas of F₁, F₂, F₃, F₄ and whose directions are perpendicular to these faces in outwards direction. Then |u₁ + u₂ + u₃ + u₄| equal 
a) 1 b) 4 c) 0 d) 2

69) The shortest distance between the lines r= (3i -15j + 9k) + β(2i - 7j + 5k) and r= (-i +j + 9k) + K(2i +j -3k) is 
a) √34 b) √3 c) 4√3 d) 48

70) Image of the point P with position vector 7i - j + 2k in the line whose vector equation is r= (9i +5j + 5k) + β(i +3j + 5k) has the position vector.
a) -9i +5j + 2k b) (9i + 5j - 2k) c) 9i -5j - 2k d) 9i +5j + 2k

71) Let points P and Q correspondent to the correspond complex numbers α and β respectively in the complex plane . If |α|= 4 and 4α²- 2αβ + β², then the area of the ∆ OPQ, O being the original equals.
a) 8√3 b) 4√3 c) 6√3 d) 12√3

72) If f"(x)> 0, ∀x ∈ R, f'(3)=0 and g(x)= f(tan²x - 2 tanx +4), 0< x <π/2, then g(x) is increasing in
a) (0,π/4) b) (π/6,π/3) c) (0,π/3) d) (π/4,π/2)

73) Let g(x)= 2gpf(x/2)=0+ f(2- x) and f"(x)< 0 ∀x ∈ (0,2). Then g(x) increase in 
a) (1/2,2) b) (4/3,2) c) (9,2) d) (0,4/3)

74) The function f(x)= tan⁻¹ (sinx + cosx) is an increasing function in
a) (-π/2,π/4) b) (0,π/2) c) (00-π/2,π/2) d) (π/4,π/2)

75) The function f(x)= ln(π+x)/ln(e+ x) is 
a) increasing (0, ∞)
b) decreasing 
c) increasing in (0, π/e), decreasing in (π/e, ∞)
d) decreasing in (0, π/e), increasing in (π/e, ∞)



BOOSTER - WB JEE -1
Directions: Each question has one correct option and carries 1 mark. For each wrong answer, 1/4 mark will be deducted.

1) Let a,b, c and d be any four real numbers. Then , aⁿ + bⁿ = cⁿ + dⁿ holds for any natural numbers n, if
a) a+ b= c + d
b) a- b= c - d 
c) a+ b= c + d, a²+ b²= c²+ d²
d) a- b= c - d, a²- b²= c²- d²

2) If α and β are the roots of x²- px +1=0 and γ is a root of x²+ px + 1= 0, then (α+ γ) (β+ γ) is 
a) 0 b) 1 c) -1 d) ρ

3) The number of irrational terms in the binomial expansion of (3¹⁾⁵ + 7¹⁾³)¹⁰⁰ is 
a) 90 b) 88 c) 93 d) 95 

4) The Quadratic expression
(2x +1)² - px + q ≠ 0 for any real x, if
a) p²- 16p - 8q< 0
b) p²- 8p + 16q< 0
c) p²- 8p - 16q< 0
d) p²- 16p + 8q< 0

5) In a certain town, 60% the families own a car, 30% own a house and 20% own both car and house. if a family is randomly chosen, then what is the probability that this family owns a car or a house but not both ?
a) 0.5  b) 0.7 c) 0.1  d) 0.9

6) The letters of the word COCHIN are permuted and all the permutations are arranged in alphabetical order as an English dictionary. The number of words that appear before the word COCHIN, is
a) 360 b) 192  c) 96  d) 48 

7) Let f: R---> R be a continuous function which satisfies f(x)= ˣ₀∫ f(t) dt. Then, the value of f(logₑ5) is 
a) 0 b) 2 c) 5 d) 3 

8) Let f: R---R> R be defined as f(x)= (x²- x +4)/(x²+ x +4). then, range of the function f(x) is 
a) [3/,5/3] b) (3/5,5/3) c) (-∞, 3/5) U (5/3,  ∞) d) [-5/3, -3/5]

9) The least value of 2x²+ y²+ 2xy + 2x - 3y + 8 for real numbers x and y, is
a) 2 b) 8 c) 3 d) -1/2 

10) Let f: [-2,2] ---> R be a continuous function such that f(x) assumes only irrational values. If f(√2)=  √2, then
a) f(0)=  0
b) f(√2 -1))= √2 -1
c) f(√2 -1))= √2 + 1
d) f(√2 -1))= √2 

11) The minimum value of cosθ + sin θ + 2/sin2θ for  θ∈ (0,π/2), is
a) 2+√2 b) 2 c) 1+ √2 d) 2√2

12) The value of lim ₓ→₂  ˣ₂∫ 3t²/(x -2) dt is
a) 10  b) 12 c) 8  d) 16 

13) If cot(2x/3) + tan(x/3) = cosec(kx/3), then the value of k is 
a) 1 b) 2 c) 3 d) -1

14) If θ ∈(π/2, 3π/2), then the value of √(4 cos⁴θ + sin²2θ+ 4 cot θ cos²(π/4 - θ/2) is 
a) - 2 cotθ b) 2 cotθ c) 2 cosθ d) 2 sinθ

15) The number of real solutions of the equation (sinx - x)(cosx - x²)= 0 is
a) 1 b) 2 c) 3 d) 4 

16) The value of {(1+ √3 i)/((1- √3 i)}⁶⁴ + {(1- √3 i)/((1+ √3 i)}⁶⁴ is 
a) 0  b) - 1 c) 1  d) i

17) Find the maximum value of |z| when |z - 3/z|= 2, where z being a complex number.
a) 1 + √3 b) 3 c) 1 + √2 d) 1 

18) Given that x is a real number satisfying (5x²- 26x +5)/(3x²- 10x +3) < 0,  then
a) x < 1/5 b) 1/5< x <3 c) x> 5 d) 1/5< x <3 or 3< x < 5

19) The value of λ such that the system of equations 
2x - y - 2z = 2; x - 2 y + z = -4; x + y + λz = 4, has no solution, is 
a) 3 b) 1 c) 0 d) -3 

20)        1               x                  x+1
If f(x)=  2x           x(x -1)         x(x +1
         3x(x -1)  x(x -1)(x -2)  (x+1)(x-1)x
Then, f(100) is equal to 
a) 0 b) 1 c) 100 d) 10

21) Let xₙ = (1- 1/3)²(1- 1/6)²(1- 1/10)².....(1- 1/{n(n+1)}/2, n ≥ 2. Then, the value of 
lim ₓ→∞ xₙ is
a) 1/3 b) 1/9 c) 1/81 d) 0

22) The various of first 20 natural numbers is 
a) 133/4  b) 279/12 c) 133/2 d) 399/4

23) A fair coin is tossed at a fixed number of times. If the probability of getting exactly 3 heads equals to the probability of getting exactly 5 heads, then the probability of getting exactly one head is 
a) 1/64  b) 1/32 c) 1/16 d) 1/8

24) if the letters of the word PROBABILITY are written down at random in a row, then probability that two B's are together, is 
a) 2/11 b) 10/11 c) 3/11 d) 6/11

25) Which of the following is not always true  ?
a) |a + b|²= |a|²+ |b|², if a and b are perpendicular to each other.
b) |a + λb|≥  |a| for all λ  ∈ R, if a and b are perpendicular to each other.
c) |a + b|²+ |a - b|² = 2(|a|² +|b|²)
d) |a + λb|≥ |a| for all λ ∈ R, if a is parallel to b

26)  if the four points with position vectors  - 2i + j + k, i + j + k, j - k and λj + k are coplanar, then λ is equal to 
a) 1 b) 2 c)  -1 d) 0 

27) The least positive value of t,  so that the lines x= t + α, y + 16= 0 and y= ax are concurrent, is
a) 2 b) 4 c) 16 d) 8 

28) In ∆ ABC, if a² cos²A - b²- c²= 0, then 
a) π/4< A< π/2
b) π/2 < A< π
c) A= π/2
d) A< π/4

29) { x ∈ R : |cosx|≥ sin x} ∩ [0, 3π/2] is equal to 
a) [0,π/4] U [3π/4, 3π/2]
b) [0,π/4] U [π/2, 3π/2]
c) [0,π/4] U [5π/4, 3π/2]
d) [0,3π/2]

30) If sin⁻¹(x - x²/2 + x³/4 - x⁴/8 + ...)=π/8, where |x|< 2, then the value of x is 
a) 2/3 b) 3/2 c) -2/3 d) -3/2

31) The area of the region bounded by the curve y= x³, its tangent at (1,1) and xaxr, is
a) 1/12 sq unit
b) 1/6 sq unit
c) 2/17 sq unit
d) 2/15 sq unit

32) if log₀·₂(x -1)> log₀·₀₄(x +5), then 
a) -1< x < 4
b) 2 < x < 3
c) 1< x < 4
d) 1< x < 3

33) The number of real roots of equation logₑ x + ex = 0 is
a) 0 b) 1 c) 2 d) 3

34) The number of distinct real roots of determinant 
Sinx    cosx       cosx
cosx   sinx        cosx = 0
cosx   cosx       sinx 
in the interval -π/4≤ x ≤ π/4
a) 0 b) 2 c) 1 d) >2

35) Let x₁, x₂, .....x₁₅ be 15 distincts numbers chosen from 1,2,3,.....15. then, the value of (x₁ -1)(x₂- 1)(x₃ - 1).....(x₁₅ -1) is
a) always ≤ 0 b) 0  c) always even  d) always odd

36) Let [x] denotes the greatest integer less than or equals to x. then, the value of α for which the function 
           Sin|-x²|/[-x²| , x ≠ 0
  f(x)=  α ,                 x= 0
is continuous at x= 0 is
a) α= 0 b) α= sin(-1) c) α = sin(1) d) α = 1

37) For all real values a₀, a₁, a₂, a₃ satisfying 
a₀ + a₁/2 + a₂/3 + a₃/4 = 0, the equation a₀ + a₁x + a₂x²+ a₃x³= 0 has a real root in the interval 
a) [0,1] b) [-1,0] c) [1,2] d) [-2, -1] 

38) Let f: R---R> R be defined as 
f(x)= 0,      x is irrar
        sin|x|, x is rational 
Then, which of the following is true ?
a) f is discontinuous for all x
b) f is continuous for all x
c) f is discontinuous at x= kπ, where k is an integer
d) f is continuous at x= kπ, where k is an integer

39) A particle starts moving from rest from the fixed point in a fixed direction. The distance s from the fixed point at a time t is given by s= t²+ at - b + 17, where a and b are real numbers. If the particle comes to rest after 5s at a rof s = 25 units from the fixed point, then values of a and b are respectively 
a) 10,-33 b) -10,-33 c) -8,-33 d) -10,33

40) lim ₙ→∞ {√1+ √2+....√(n -1)}/n√n is equal to 
a) 1/2 b) 1/3 c) 2/3 d) 0

41) if lim ₓ→₀ {axeˣ - b log(1+ x)}/x²= 3, then the value of a and b are, respectively 
a) 2,2 b) 1,2 c) 2,1 d) 2,0

42) if the vertex of the conic y²- 4y = 4x - 4a always lies between the straight lines x + y = 3 and 2x + 2y -1= 0, then 
a) 2< a<4
b) 1/2< a<2
c) 0< a<2
d) -1/2< a<3/2

43) Number of intersecting points of the conics 4x²+ 9y²=1 and 4x²+ y²=4 is
a) 1 b) 2 c) 3 d) 0

44)  The value of λ for which the straight line (x - λ)/3 = (y -1)/(2+ λ)= (z -43)/-1 may lie on the plane x - 2y = 0, is
a) 2 b) 0 c) -1/2 d) there is no such λ

45) Area of the region bounded by y=  |x| and y = -|x|+ 2 is
a) 4 sq unit
b) 3 sq unit
c) 2 sq unit
d) 1 sq unit

46) Let d(n) denotes the number of divisors of n including 1 and itself. Then , d(225), d(1125) and d(640) are
a) in AP b) in HP c) in GP d) consecutive integers

47) The trigonometrical equation sin⁻¹ x = 2 sin⁻¹2a  has a real solution, if
a) |a|> 1/√2 b) 1/2√2< |a| 1/√2 c) |a|> 1/2√2  d) |a|≤ 1/2√2

48) If (2+ i) and (√5- 2i) are the roots of the equation (x²+ ax + b)(x²+ cx + d) =0,where a, b, c and d are real constants , then product of all the roots of the equation is
a) 40  b) 9√5 c) 45  d) 35

49) If f: [0,π/2]---R is defined as 
           1          tanθ         1
f(θ)= - tanθ      1        tanθ
         -1         -tanθ          1
Then the range of f is
a) (2, ∞) b) (-∞,-2) c) [2,∞) d) (-∞,2]

50) If A and B are two matrices such that AB= B and BA= A, then A²+ B² equals 
a) 2AB b) 2 BA c) A+ B d) AB 

51) If ω is an imaginary cube root of unity, then the value of the determinant
1+ ω        ω²       -ω
1+ ω²       ω        -ω² is 
ω+ ω²      ω        -ω²
a) -2ω b) -3ω² c) -1 d) 0

52) Let [x] denotes the fractional part of a real numbers x. Then,  in the value of 
∫ f(x²) dx at (√3,0) is
a) 2√3 - √2 -1
b) 0 c) √2 - √3 + 1 d) √3 - √2 +1

Directions:  Each question has one correct option and carries 2 marks. For each wrong answer, 1/2 mark will be deducted.

53) Let f: R--->R be differential at x=0. If f(0)=0 and f'(0)=2, then the value of 
lim ₓ→₀ (1/x) [f(x)+f(2x)+ f(3x)+......+ f(2015x)] is 
a) 2015 b) 0 c) 2015x2016 d) 2015 x 2014

54) If x and y are digits such that 17!= 3556xy428096000, then x+ y equals 
a) 15 b) 6 c) 12 d) 13

55) A person goes to office by car, scooter, bus and train, probability of which are 1/7, 3/7, 2/7, 1/7, respectively. Probability that he reaches office late, if it takes car, scooter, bus or train is 2/9, 1/9, 4/9 and 19, respectively. Given that he reached office in time, the probability that he travelled by a car is 
a) 1/7 b) 2/7 c) 3/7 d) 4/7

56) The value of ∫ (x -2)/{(x -2)²(x +3)⁷}¹⁾³ dx is 
a) (3/20){(x -2)/(x+3)}⁴⁾³+ C
b) (3/20){(x -2)/(x+3)}³⁾⁴+ C
c) (5/12){(x -2)/(x+3)}⁴⁾³+ C
d) (3/20){(x -2)/(x+3)}⁵⁾³+ C

57) Let f: N---> R be such that f(1)=1 f(1) + 2f(2) + 3f(3) + ....+ nf(n) = n(n+1) f(n), for all n ∈N, n≥ 2, where N is the set of natural numbers and R is the set of real numbers. Then, the value of f(500) is 
a) 1000 b) 500 c) 1/500 d) 1/1000

58) if 5 distinct balls are placed at random into 5 cells, then the probability that exactly one cell remains empty, is 
a) 48/125 b) 12/125 c) 8/125 d) 1/125

59) A Survey of people in a given region showed that 20% were smokers. The probability of death due to the lung cancer, given that a person smoked, was 10 times the probability of death due to lungs cancer, given that a person did not smoke . If the probability of death due to lung cancer in the region is 0.006. What is the probability of death due to lung cancer given that a person is a smoker?
a) 1/140 b) 1/70 c) 3/140 d) 1/10

60) In a ∆ ABC , if Angle C= 90°, r and R are the inradius and circumradius of the ∆ ABC respectively, then 2(r + R) is equal to 
A) b+ c b) c+ a c) a+ b d) a+ b + c

61) Let α and β be two distinct roots of a cosθ + b sinθ = c, where a,b,c are three real constants and θ ∈ [9,2π]. Then α + β is also a root of the same equation, if
a) a+ b = c b) b+ c = a c) c+ a = b d) c= a

62) For a matrix 
      1    0     0
A= 2    1     0
      3    2     1 if U₁, U₂ and U₃ are 3 x 1 column matrices satisfying 
          1              2              2
AU₁ = 0 & AU₂= 3 & AU₃=3
           0              0             1 and U is 3 x 3 matrix whose column are U₁, U₂ and U₃. Then, sum of the elements of U⁻¹ is 
a) 6 b) 0 c) 1 d) 2/3


Directions: Each question has one or more correct option/s, choosing which will fetch maximum 2 marks on pro rata basis, however, choice of any wrong option/s will fetch zero mark for the question.

63) Let f be any continuously differentiable function on  [a, b] and twice differentiable on (a,b) such that f(a)= f'(a)= 0 and f(b)= 0. Then,
a) f"(a)= 0
b) f'(x)= 0 for some x ∈ (a,b)
c) f"(x)=0≠ 0 for some x ∈ (a,b)
d) f'''(x)= 0 for some x ∈ (a,b)

64) A relation ρ on the set of real number R is defined as {xρy : xy> 0}. Then, which of the following is/are true ?
a) ρ is reflexive and Symmetric 
b) ρ is Symmetric but not Reflexive 
c) ρ is symetric and transitive
d) ρ is equivalence relation.

65) if cos x and sin x are solution of the differential equation 
a₀ d²y/dx² + a₁ dy/dx + a₂y = 0.
Where a₀, a₁ and a₂ are real constants, then which of the following is/are always true ?
a) A cosx + B sinx is a solution , where A and B are real constants
b) A cos(x +π/4) is a solution , where A is a real constant.
c) A cosx sinx is a solution , where A is a real constant.
d) A cos(x + π/4) + B sin(x -π/4) is a solution , where A and B are real constants.

66) Which of the following statements is/are correct for 0 <θ < π/2 ?
a) √cos θ≤ cos(θ/2)
b) (cosθ)³⁾⁴≥ cos(3θ/4)
c) cos(5θ/6)≥ (cosθ)⁵⁾⁶
d) cos(7θ/8) ≤ (cosθ)⁷⁾⁸

67) Let 16x²- 3y²- 32x - 12y= 44 represents a hyperabola. Then 
a) length of the transverse axis is 2√3
b) length of each latus rectum is 32/√3
c) eccentricity is √(19/3)
d) equation of a directrix is x= √19/3

68) For the function f(x)= [1/[x]], where [x] denotes the greatest integer less than or equal to x, which of the following statements are true ?
a) the domain is (-∞,∞)
b) the range is (0) U (-1) U {1}
c)  the domain is (-∞,0) U [1, ∞)
d)  the range is {0} U {1}

69) Which of the following is/ are always false?
a) a quadratic equation with rational co-efficients has zero or two irrational roots.
b) a quadratic equation with real co-efficients has zero or two non real roots.
c) a quadratic equation with irrational co-efficients has zero or two irrational roots.
d) A quadratic equation with integer co-efficients has zero or two irrational roots.

70) If the straight line (a -1)x - by + 4=0 is normal to the hyperbola xy= 1, then which of the following does not hold ?
a) a >1, b > 0
b) a >1, b < 0
c) a <1, b < 0
d) a <1, b > 0

71) Suppose a machine produces metal parts that contains some defective parts that contain some defective parts with probability 0.05. How many parts should be produced in order that the probability of at least one part being defective is 12 or more ? (Given that log95= 1.977 and log2= 0.3)
a) 11 b) 12 c) 15 d) 14

72) Let f: R---R> R be such that f(2x -1)= f(x) for all x ∈ R. If f is continuous at x = 1 and f(1)= 1, then 
a) f(2)=1
b) f(2)=2
c) f is continuous only at x= 1
d) f is continuous at all points.














1) function

2) If y= (1+x)(1+x²)(1+x⁴), then dy/dx at x= 1 is ...
A) 20   B) 28  C) 1  D) 0

3) If y= (tan⁻¹x)², then (x²+1)² d²y/dx² + 2x(x²+1) dy/dx is..
A) 4.  B) 0   C) 2   D) 1

4)  function+ mean theorem

5) which of the following is not a correct statement ?
A) mathematics is interesting
B) √3 is a prime  
C) √2 is irrational
D) the sun is star.

6) If the function f(x) satisfies    lim ₓ→₁ {f(x) -2}/(x² -1)=π, then lim ₓ→₁ f(x)= 
A) 1  B) 2  C) 0  D) 3

7) The tangent to the curve y= x³+1 at (1,2) makes an angle ¢ with y-axis, then the value of tan ¢ is..
A) -1/3 B) 3. C) -3 D) 1/3 

8) If the function of f(x) defined by f(x)= x¹⁰⁰/100 + x⁹⁹/99 + ... + x²/2 + x+1, then f'(0)= 
A) 100 f'(0) B) 100 C)1 D) -1

9) integration
10) integration
11) integration
12) integration
13) relation
14) relation
15) function
16) function

17) The domain of the function f(x)=√cosx is ..
A) [3π/3,2π]          B) [0,π/2]   
C) [-π/2,π/2]  D) [0,π/2]U [3π/3,2π]   

18) In a class of 60 students, 25 students play cricket and 20 students play tennis and 10 students play both the games, then the number of students who play neither is..
A) 45   B) 0 C) 25 D) 35 

19) given 0≤ x ≤ 1/2 then the value of tan[sin⁻¹{x/√2 +√(1-x²)/√2} - sin⁻¹x] is..
A) 1  B) √3. C) -1  D) 1/√3

20) The value of sin(2 sin⁻¹0.8) is
A) 0.48 B) sin 1.2° C) sin 1.6° D) 0.96

21) If A is 3x4 matrix and B is a matrix such that A'B and BA' are both defined then B is of the type
A) 4x4 B) 3x4 C) 4x3 D) 3x3 

22) The symmetric part of the matrix A= 1    2      4 
                   6    8      2 
                   2    -2     7 
A) 0   -2.  -1        B) 1   4      3
    -2    0   -2             2   8      0
    -1   -2    0             3   0      7
C) 0   -2    1.       D) 1    4     3
     2.   0    2             4    8     0
    -1    2    0             3    0     7

23) If A is a matrix of order 3, such that A (adj A)= 10 I, then |adj A| = 
A) 1.    B) 10 C) 100   D) 10I

24) consider the following statements:
I) if any two rows or columns of a determinant are identical, then the value of the determinant is zero.
ii) if the corresponding rows and columns of a determinants are interchanged, then the value of the determinant does not change
iii) if any two rows(or columns) of a determinant are interchanged, then the value of determinant changes in sign. which of these are correct
A) i and ii B) i and ii
C) i,ii and iii  D) ii and iii

25) The inverse of the matrix 
A= 2    0     0
      0    3     0
      0    0     4 is
A)  1/12    0        0
         0      1/8     0
         0        0      1/6

B)  2    0     0
      0    3     0
      0    0     4 
C) 1/24     0          0
         0      1/24     0
         0        0      1/24
D) 1/2    0       0
      0     1/3     0
      0    0         1/4 

26) If a, b and c are in AP, then the value of 
x+2    x+3   x+a
x+4    x+5   x+b
x+6    x+7   x+c
A)0 B) x-(a+b+c)
C)  (a+b+c)   D) 9x²+a+b+c

27) The local minimum value of the function f' given by f(x)= 3+|x| x belongs to R is
A) -1      B) 3     C) 1    D) 0 

28) increasing and decreasing
29) rate measure
30) definite integration (area)
31) definite integration (area) 
32) differential equations
33) differential equations
34) 3D
35) 3D
36) 3D
37) 3D
38)  3D
39) probability
40) probability
41) probability
42) probability
43) vector
44) vector
45) vector
46) vector

47) If sinA= sin B, then
A) (A+B)/2 is any multiple of π/2 and (A-B)/2 is any odd multiple of π
B)  (A+B)/2 is any odd multiple of π/2 and (A-B)/2 is any multiple of π
C) (A+B)/2 is any multiple of π/2 and (A-B)/2 is any even multiple of π
D) (A+B)/2 is any even multiple of π/2 and (A-B)/2 is any odd multiple of π 

48) if tanx =3/4, π< x<3π/2, then the value of  cos(x/2) is .
A) -1/√10 B)3/√10 C) 1/√10 D)-3/√10

49) in a triangle ABC, a[b cosC - c cos B]= 
A) 0  B) a²  C) b²- c²  D) b²

50) If a and b are two different complex numbers with |b|=1, then |(b-a)/(1-ab)|
A) 1/2  B) 0  C) -1 D) 1  E) none

51) The set A={x:|2x +3|<7} is equal to the set
A) D= {x: 0<x +5<7} 
B) B= {x: -3<x <7} 
C) E= {x: -7<x <7} 
D) C= {x: -13<2x <4} 

52) How many 5 digit telephone numbers can be constructed using the digits 0 to 9, If each numbers starts with 67 and no digit appears more than once.
A) 335 B) 336 C) 338 D) 337 

53) If 21st and 22nd terms in the expansion of (1+x)⁴⁴ are equal, then x is equal to
A) 8/7 B) 21/22 C) 7/8 D) 23/24

54) consider an infinite geometric series with first term 'a' and common ratio 'r'. If the sum is 4 and the second term is 3/4, then
A) 2,3/8  B) 4/7,3/7  C) 3/2,1/2 D) 3, 1/4

55) A straight line passes through the point (5,0) and (0,3). The length of the perpendicular from the point (4,4) on the line is
A) 15/√34 B)√17/2 C) 17/2 D) √(17/2)

56) equation of the circle (a-,-b ) and radius √(a²-b²) is 
A) x²+y²+2ax+2by+2b²=0
B) x²+y²-2ax-2by-2b²=0
C) x²+y²-2ax-2by+2b²=0
D) x²+y²-2ax+2by+2b²=0

57) The area of the triangle formed by the lines joining the vertex of the parabola x²= 12y to the end of latus rectum is
A) 20 sq.units B) 18 sq.units
C) 17 sq.units D) 19 sq.units

58) If the coefficient of variation and standard deviation are 60 and 21 respectively, the arithmetic mean of distribution is
A) 60  B) 30.  C) 35   D) 21

59)  

60)      3 sin πx/5x,  x≠ 0
If f(x)=   2K ,.          x= 0
 is continuous at x= 0, then the value of K is..
A) π/10 B) 3π/10 C) 3π/2 D) 3π/5

Tuesday, 13 July 2021

QUICK PERCENTAGE SUMS

LEARN
------------
PERCENT
  
* 1/2= 50%

* 1/3 = 33 ¹/3%

* 1/4 = 25%

* 1/5 = 20%

* 1/6 = 16 ²/3%

* 1/7 = 14 ²/7 %

*  1/8 = 12 ¹/2 %

*  1/9 = 11 ¹/9 %

*  1/10 = 10 %

* 1/11 = 9 ¹/11 %

* 1/12 = 8 ¹/3 %

* 1/13 = 7 9/13 %

* 1/14 = 7 ¹/7 %

* 1/15 = 6 ²/3 %

* 1/16 = 6 ¹/4 %

* 1/17= 5 ¹⁵/17%

* 1/18= 5 ⁵/9%

* 1/19= 5 ⁵/19%

* 1/20 = 5%

* 1/24 = 4 ¹/6 %

* 1/25 = 4 %

* 1/40 = 2 ¹/2 %












**Find The Value Of:::
1) 26% of 496.
A) 128.96. B) 120.96 C) 122.96 D) n

2) 35.6% of 928.
A) 330.3. B) 333.3 C) 323.3 D) n 

3) 11% of 341.
A) 27.51 B) 37.51. C) 47.51 D) n

4) 18% of 83.
A) 12.94 B) 13.94 ac) 13.94. D) n 
 
5) 12.5% of 968.
A) 111 B) 121 C) 131 D) 151 

6) 44% of 3564.
A) 1468.16 B) 1444 C) 1568.16 D)n 

7) 230/3 % of 786 
A)600 B) 602 C) 602.6. D) 603 

8) 67% of 387 
A) 259.29. B) 260.59 C) 261.6 D) n 

9) 27% of 834. 
A) 225.18. B) 225 C) 230.3 D) n 

10) 20% of 25/79.
A) 0.06 B) 0.061 C) 0.063. D) 0.064 

11)  56.866% of 240.
A) 136 B) 136.48. C) 140.36 D) n 

12) 19.28 of 686.
A) 132 B) 132.3. C) 133.3 D) 142 

13) 21% of 134.
A) 28.14. B) 30 C) 32.32 D) n 

14) 39.5% of 823.
A) 123.8 B) 325.08. C) 423.7 D) n

15) 22.5% of 688 
A) 154.8. B) 155.7 C) 156.9 D) n 

16) 34.3% of 735.
A) 252.1.B) 321.5 C) 421.1 D)122.1 

17) 41.66% of 876.
A) 436 B) 645 C) 365. D) 655 

18) 19.44 % of 144.
A) 28. B) 38 C) 48 D) 57 

19) 7.25% of 336.
A) 21.36 B) 22.36 C) 23.36 D) 24.36

20) 63% of 984. 
A) 623.92 B) 619.92. C) 196.92 D)n

21) 76.5 % of 739. 
A) 555.65 B) 565.335. C) 500 D) n 

22) 48.12 of 638.
A) 304  B) 305 C) 307. D) 308 

23) 38.25% of 3960.
A) 1514.7. B) 2514.7 C) 2321.4 D)n

24) 34.28% of 553.
A) 159.6 B) 169.6 C) 189.6. D) n

25) 16.5% of 876.
A) 122.44 B) 134.4 C) 144.54. D) n

26) 17.14% of 965.
A) 165.4. B) 255.6 C) 143.6 D) n 

27)    61.11% of 675
A) 400 B) 412.5. C) 432.5 D) n

28) 25.39% of 889
A) 220 B) 225.8. C) 230 D) 245

29) 16.7 8% of 567
A) 94 B) 95.1. C) 96 D) 97.1

30) 35.33% of 780.
A) 270 B) 275.6. C) 280 D)285.6

31) 71.66 % of 1236
A) 880 B) 885 C) 885.8. D) 887

32) 42.5% of 1248
A) 500 B) 530 C) 530.4. D) 540.5

33) 71.6 % of 280
A) 199 B) 2p048. C) 210 D) 215.5

34)  47.19% of 1640
A) 770 B) 773.916. C) 742.31 D)n

35) 26.8% of 580 
A) 150.4 B) 155.44. C) 160.2 D)n

36) 39.6% of 760 
A) 300.96. B) 302.33 C) 400 D) n

37) 38.38% of 836
A) 319 B) 320.9. C) 344 D) 346.9

38) 14.85% of 548
A) 81.4. B) 82.4 C) 83.4 D) 84.4

39) 76.66% of 1158
A) 887.7. B) 890 C) 856.7 D) n

40) 65.4 % of 1578
A) 1000 B) 1020 C) 1030 D) 1032.

41) 21.8 % of 841
A) 140.3 B) 180.3 C) 183.3. D) 190

42) 48.8% of 1247 
A) 1600 B) 1654 C) 608.54. D) 600

43)  127.5 % of 1232
A) 1470 B) 1570.8. C) 1320 D) 1432

44) 13.28% of 638
A) 75.75 B) 84.75. C) 85.5 D) 89.9

45) 41.6 % of 279
A) 116.064. B) 123.5 C) 144.2 D) 135.35

46) 23.1% of 738
A)130.5 B) 170.478 C) 180 D) 200

47) 49.4% of 479.
A) 123 B) 236.626. C)249 D) 290.92

48) 41.2 5% of 672
A)230.7 B)277.20 C)280 D) 290.34

49) 127% of 871
A) 1000 B) 1106.17. C) 1200 D) 1231.3

50) 52.5 % of 1132
A) 560 B) 579 C) 594.3. D) 595.7

51) 67.8 % of 967
A)640 B)655.63. C)660 D)674.3

52) 45.45% of 896 
A) 400 B) 407 C) 410 D) 422

53)  74.3% of 1421
A) 1000 B) 1034.40 C) 1055.50 D) 1334.50

54) 41% of 492
A) 120 B) 201.72 C) 210 D) 222.6

55)  37% of 4473
A) 1055 B) 1655.01 C) 1321 D) 1432

56) 37% of 509 
A) 133 B) 143.33 C) 188.33 D) 210.33

57) 98% of 637
A) 624.26 B) 662.56 C) 456.76 D) 566.65

58) 46% of 368 
A) 165.25 B) 169.28 C) 123.45 D) 327.78

59) 325/4 % of 2240
A) 1280 B) 1820 C) 1028 D) 1082

60)  109/6 % of 14400.
A) 2616 B) 2166 C) 2661 D) 1626

61) 403/6 % of 3750.
A) 2518.75 B) 2343.15 C) 3214.45 D) 1445.55

62) 17.9% of 1087.
A) 194.573 B) 209.76 C) 342.54 D) 127.34 

63) 250.25% of 548 
A) 1231.37 B) 1371.37 B) 1431.37 D) 1433.37

64) 12.625% of 74.       
A) 9.34 B) 10.34 C) 8.34 D) 11.34

65) 28.9% of 361.
A) 104.329 B) 133.329 C) 433.36 D) 176.329

66) 4.3% of 16.1
A) 0.6923 B) 6.923 C) 69.23 D) 592.3

67) 68.2 % of 687
A) 468.532 B) 486.523 C) 563.623 D) 466.623

68) 154.5 % of 618
A) 954.81 B) 851.51 C) 771.81 D) 1021.21

69) 83.9 % of 539
A) 452.221 B) 354.21 C) 352.21 D) 451.43

70) 46.8 % of 1184.
A) 554.11 B) 452.11 C) 341.51 D) 542.11

71) 18.4% of 184.
A) 33.856 B) 35.566 C) 56.6 C) 56.66 D) 66.6

72) 26.5% of 106.
A) 28.09 B) 32.09 C) 21.9 D) 45.9

73) 55.25% of 267
A) 14.75 B) 141.75 C) 147.5175 D) 1441.75

74) 45.4 % of 940.
A) 231.6 B) 426.76 C) 496.6 D) 525.6

75) 38.5 % of 6888.
A) 2651.88 B) 2341 C) 2341 45 D) 342

76) 86.4 % of 726.
A) 627.264 B) 234.56 C) 453.67 D) 566.71

77) 27.775% of 4500.
A) 1350 B) 1250 C) 1150 D) 1050

78) 41.66 % of 2436.
A) 1205 B) 1105 C) 1015 D) 905

79) 51.92% of 520.
A) 269.98 B) 369.98 C) 469.98 D) 567.98

80) 16.75 % of 5680
A) 801.4 B) 951.4 C) 1051.4 D) 671.4

82) 180/17% of 68.34
A) 72.36 B) 7.236 C) 0.7326 D) 0.07236

83) 46.44 % of 729 (express your answer to the nearest integer)
A) 439 B) 339 C) 239 D) 149

84) 22.55% of 8877
A) 2000 B) 2100 C) 2002.26 D) 2134.466

85) 31.31% of 3100.    
A) 870.61 B) 970.61 C) 1070.71 D) 1200.71

86) 27% of 1296.
A) 249.92 B) 349.92 C) 449.92 D) 390.91

87) 164% of 5672.
A) 9302.08. B) 9402.08 C) 9502.08 D) 9502.08

88) 4.504% of 9.08.
A) 0.412232 B) 4.12232 C)  41.2232 D) 412.232  

89) 84% of 564.
A) 473.76 B) 573.76 C) 673.76 D) 773.76

90) 555/8% 6568.
A) 4556.55 B) 3556.55 C) 2556.55  D) 1556.55

91) 112.5% 1100.
A) 1037.5 B) 1137.5 C) 1337.5 D) 1337.5

92) 360/19% of 9709.
A) 1839.6 B)1739.6 C)1639.6 D)  1539.6

93) 21.63 % of 1296.
A) 250.32 B) 260.32 C) 270.32 D)   280.32

94) 61.3 5% of 360.
A) 200.86 B) 190.86 C) 180.86 D) 170.86

95) 34.5 % of 6288.
A) 2169.36 B) 2069.36. C) 2269.36 D)  2369.36

96) 517/8% of 912
A) 569.38 B)579.38 D) 589.38

97)  48% of 8420.
A) 4041.6 B) 3041.6 C) 2041.6 D) 1041.6

98) 16.5% of 784.
A)129.36 B)139.36 C)149.36  D)159.36 

99) 20.63% of 1890 to the nearest integer.
A) 390 B) 400 C) 340 D) 450

100) 22.5% of 832
A) 185.2 B)186.2 C)  187.2 D)188.2 

101) 63.23 % of 1443 (round off to the nearest integer ).
A) 989 B) 999 C) 979 D) 969

102) 37% of 625.
A) 212.25 B) 231.25 C) 331.35 D) 102.65

103) percentage of 1926 40.0 8 of 2404 % of 848 is what percentage of 104 of 128 is what percentage of 1850 after one place of decimal 70 1.5 % of 2960 3.125 of 2575 what percentage of 248 to the nearest integer 54.1 6% of 1320 to the nearest 850 2.8 % of 2499 Round up to the next 40 2.4 % of 3692 the nearest integer 234 is what percentage of 861 78% of 2.5 % of 455 to the nearest integer 60.5 6% of 1440 to the nearest integer 30 3.75% 168 17.5% 33% of 784 3.5% 7% of 560 54.1 6% of 400 85% of 1669 is what percentage of 320 up to two places of decimal 18% of 726 7.25% of 384 48.4 6% of 286 to the nearest integer 63% of 1818 369 what percentage of 144 23% 362 the nearest 99% of 1331 to the nearest integer 35.2 percent of 7.5 % of 4489 27 is what percent is a 3671 65 percentage of 792 87% of 4.8 % of 990 to the nearest integer 44% of 32.9 678 is what percent of 700 433 to what percentage of 1444 65% of 8888 7.14 % of 1351 to the nearest integer 97 is what percentage of 7272 87.5% of 731 128.5 7% off 1694 to the nearest integer 58 what percentage of 490 what percentage of 175 7.4 71.4 2% of 434 to the nearest 5440 16% of 1824 to the nearest integer 40 6.2 % of 480 334 is what percentage of 927 75 is what percentage of 728 19.8 1% of 2412 8% of 800 2.5 % of 336 4152 is what percentage of 685 up to 1 decimal 15.3% of 285 26.7 8% of 896 to the nearest integer 84.3 3% of 666 to the one place of the 7.1 % of 7280 31% 3141 what percentage of 10 219 is what percentage of 879 to the nearest integer 53.5 1580 270 2.9 % of 760 40% of 915 what percentage of 637 240 what percentage of 675 1432 what percentage of 750 162 what percentage of 870 to 2003 what percent is 843 is 182 what percentage of 682 341 what percentage of 63141 988 what percentage 1080 741 is what percentage of 941 230 is what percentage of 430 219 what percentage of 437 is what percentage of 567 63.2% of 900 8.8 % of 322 28.2 8% of 120 8.5 what is 15.8% of 480 what is 5.2 % of 728 what is 9.8 % of 120 what is 45% of 630 what is 7.5 % of 820 what is 56% of 720 50 7.5% 350 98.5% of 775 19.6 6% of 840 34.3 3% of 570 63 percentage on 142 78 is what percent is a 700 15691 percentage of 600 953 what percentage of 270 what percentage of 729 3842 percentage of 549 is 81 what percentage of 676 what percentage of 999 is 500 38.5% of 680 94.7 1% 742 of 12.5 what percentage of 300 41.6 6% of 372 250 3.52 % of 888 1.1 % of 780 77.2 20% of 53181 what is 42% of 36 63% of 231 28% of 431 72% of 888 36% of 784 35% of 870 62% of 442 57% of 670 23% of 1024 80% of 737 72% of 432 55% of 678 95% of

*** What percentage of:::
1) 151 is 71.
A) 47% B) 48% C) 49% D) 50%

2) 1234 is 569 
A) 45% B) 45.1% C) 46% D) 46.1% 

3) 521 is 134 .
A) 25% B) 25.7% C) 26%  D) 30% 

4) 1354 is 831 
A) 61.4% B) 70 % C) 71.71% D) 75%

5) 131 is 88
A) 67.2% B) 70.2 % C) 75% D) 45.5%

6) 217 is 53 
A) 24 4. B) 25.4 C) 26.4 D) 27.4 

7) 837 is 121
A) 14.4. B) 15.4 C) 16.4 D) 17.4

8) 1367 is 78
A) 5% B) 5.2% C) 5.5% D) 5.7%.

9) 363 is 181
A) 40.1% B) 49.87% C) 50% D) 61%

10) 1354 is 861 
A) 60% B)63.6% C) 64% D) 66% 

11) 368 is 798
A) 210% B) 216.9% C) 220% D) 225% 

12) 534 is 949
A) 177.7%. B) 187.7% C) 197.7% D)n
 
13) 1548 is 3891
A) 39.8% B) 49.8% C) 59.8% D) 60%

14) 1134 is 463
A) 40% B)40.8%. C) 50% D) 50.8%

15) 551 is 384
A) 123% B) 140% C) 146%. D) 152%

16) 237 is 197 
A)67.1% B)75.1% C)83.1%. D)79.9

17) 371 is 237
A) 60%  B) 60.9% C) 63.8% D) 68.2%

18) 561 is 329 
A) 58.6% B) 62.3% C)69.3% D) 71.2%

19) 2241 is 110
A) 34% B) 44% C) 44/9% D) 54%

20) 5505.5 is 88
A) 16% B) 1.6% C) 0.16% D) 0.016%

21) 154 is 73.92
A) 45% B) 48% C) 58% D) 68%

22) 271 is 62.33
A) 23% B) 33% C) 43% D) 53%

23) 288 is 152.64
A) 53% B) 43% C) 33% D) 23%

24) 3000 is 1297.5.
A) 43.25% B) 33.25% C) 23.55% D) 13.55%

25) 464 is 106.812
A) 464.4 B) 364.4 C) 264.4 D) 164.4

26) 7240 is 2515.90.         
A) 32% B) 33.4% C) 34.75% D) 45.76%

27) 135 is 112.5
A) 350/3% B)350% C) 85% D) 76%

28) 185 is 11.5625.
A) 5.25% B) 6.25% C) 7.25% D) 8.25%

29) 224 is 32
A) 14.28% B) 13.28% C) 12.28% D) 11.28%

30) 2009 is 632.835
A) 30.5% B) 31.5% C) 32.5% D) 33.5%

31) 622 is 3110/9.
A) 35.55% B) 45.55% C) 55.55% D) 65.55%

32) 222 is 92.5.
A) 115/3% B) 125)3% C) 135/3 % D) 145/3 %

33) 25360 is 63983.28.
A) 52.3% B) 152.3% C) 252.3 % D) 352.3%

34) 456 is 72.
A) 200/19 B) 300/19 C) 500/19 D) 400/19 

35) 666 is 480.
A) 138.75% B) 238.75% C) 128.75% D) 183.75%

36) 2285 is 423.
A)15.39% A) 16.39% C) 17.39% D) 18.39%

37) 1344 is 648.
A) 48% B) 49% C) C) 50 % D) 51%

38) 2736 is 855
A) 31.25% B) 32.25% C) 30.25% D) 29.25%

39) 









1) By what percentage should 570 be decreased to become 350 ?
A) 35% B) 38.6% C) 39% D) 50%

2) When 175 is increased by 165%, what is the result ?
A) 463.75. B) 356 C) 348.8 D) n

3) 167 when decreased by 23.9% becomes...
A) 127.087. B) 120 C) 141.56 D) n

4) By what percentage is 1151 less than 1823 ?
A) 25% B) 30% C) 35.9 % D) 36.9%.

5) By what percentage is 1367 more than 943.
A) 42% B) 44.95% C) 46% D) 52.6%

6) By what percentage is 138 less than 461
A) 50% B) 60% C) 70%. D) 80%

7) By what percentage should 4128 be increased to become 5971
A) 44.65%. B) 45.67% C) 46.7% D) n

8) 348 when increased by 31.4 % becomes ___?
A) 450 B) 456.3 C) 457.23. D) 469.9

9) 11.4% of 18.2 is what percentage more than 14.1% of 12.8.
A) 12% B) 13% C) 14 % D) 15%

10) Evaluate 4.2857% of 168 to the nearest integer.
A) 7 B) 6 C) 5 D) 4

11) 698.65 is what percentage of 2409 ? (Express as integer)
A) 30% B) 29% C) 28% D) 27%

12) 95 is approximately what percentage of 3041 ?
A) 100/32% B) 100% C) 32% D) 32.5%

13) what percentage of 432.1 is 139.6 ? (Express as integer)
A) 30% B) 29% C) 28% D) 27%

14)



Wednesday, 7 July 2021

Daily Revised(Maths) (IX) CBSC

13/5/22
FACTORISATION



5) x³ - 2x² - x + 2

6) x³ - 3x² - 9x -5

7) x³ + 13x² - 32x + 20.

8) 2x³ + x² - 2x - 1

9) x² - 5x + 6

10) x³ - 23x² + 142x + 120

11) 9x² + 6xy + y²

12) 4x² - 4x + 1

13) x² - y²/100

14) 8a³ + b³ + 12a²b + 6ab²

15) 8a³ - b³ - 12a²b + 6ab².

16) 27 - 125a³ - 135a + 225a²

17) 64a³ - 27b³ - 144a²b + 108ab².

18) 27p³ - 1/216 - 9p²/2 + p/4

19) 27y³ + 125z²

20) 64m³ - 34n³

21) x² + 1/x² - 2x - 2/x +2

22) a(a- 1)- b(b- 1)

23) 8x³ - 27y³ + 36x²y +54xy².

24) 8x³ + y³ + 27z³- 18xyz

25) (2x+ 3y)³ - (2x - 3y)³.

26) a³ - b³ + 1 + 3ab

27) (p -q)³ + (q - r)³ + (r - p)³

28) 9x³ - 9y³ + 6x + 1

29) x² - 5x/12 + 1/24

30) x⁶ - y⁶

31) 1 + x³

32) x¹² - y¹²

33) 54a³ - 250b³

34) 8x³ + 27y³ + 36x²y +54xy².





9/5/22
Number system

1) Find six rational numbers between 3 and 4.

2) Find five rational numbers between 3/5 and 4/5.

3) Find nine rational numbers between 0.1 and 0.2.

4) Express in the form of P/Q, where P and Q are Integers and Q≠ 0. 
a) 0.477777......
b) 0.001001001001........



13) Express 0.12333333... in the form of p/q

14) simplify: 2√6/(√2+ √3) + 6√2/(√6 + √3).

15) If x= 3 + 2√2, find the value of x² + 1/x²

) If x - 1/2x = 3, find the value of a) x²+ 1/4x² b) x⁴ + 1/16x⁴. 10,199/2





22/4/22
1) Simplify: 1/(√6-√5) - 1/(√7- 2√10) - 4/(√6+√2).

2) Factorise: (ax -by)²+(bx -ay)². 

3) show that 2x+7 is a polynomial factor of 2x³ + 7x²- 4x -14.

4) If x-a is a factor of x³ - ax²+ x+2. Then find the value of a. 













































3) Express 3.146 as a vulgar fraction. 3143/999

5

6/7/21
1) Represent on real line: √8

2) Insert three rational numbers between 3 and 4.


5) Solve the equation graphically: 3x-y=7; 2y + x= 0