Thursday, 13 May 2021

REVISION Maths(X) ICSE

Revision (Similarity)


1) A vertical stick 12m long casts a shadow 8m long on the ground. At the time a tower casts the shadow 40m long on the ground. Determine the height of the tower.      60m

2) The perimeter of two similar triangles are 30 and 20cm respectively. If one side of the first triangle is 12cm, determine the corresponding side of the second triangle.      8cm

3) The perimeter of two similar triangles ABC and PQR are respectively 36cm and 24cm. If PQ= 10cm, find AB.        15cm.

4) Two triangles BAC and BDC, right angled at A and D respectively, are drawn on the same base BC and on the same side of BC. If AC and DB intersect at P, prove AP x PC= DP x PB.

5) P and Q are points on sides AB and AC respectively of ∆ ABC. If AP= 3cm, PB=6 cm,  AQ= 5cm and QC = 10cm, show BC = 3PQ

6) Two poles of height a metres and b metres are p metres apart. Prove that the height of the point of interaction of the lines joining the top of each pole to the foot of the opposite pole is given by ab/(a+b) metres.

7) In trapezium ABCD AB//DC and DC= 2AB.  EF drawn parallel to AB  cuts AD in F and BC in E such that BE/EC = 3/4, Diagonal DB intersects EF at G. Prove that 7 FE = 10 AB.

8) A vertical stick 10cm long casts a shadow 8cm long. At the same time a tower casts a shadow 30m long. Determine the height of the tower.     37.5m

9) The perimeters of two similar triangles are 25cm and 15cm respectively. If one side of first triangles is 9cm, what is the corresponding side of the other triangle ?     5.4cm

10) in ∆ ABC and DEF, it is being given AB= 5, BC= 4cm and CA= 4.2cm, DE= 10cm, EF= 8cm and FD= 8.4cm. If AL perpendicular to BC and DM perpendicular to EF, find AL : DM.      1:2

11) D and E are the points on the side AB  and AC respectively of ∆ ABC such that AD= 8cm, DB= 12cm, AE=  6cm and CE= 9cm. prove that BC=5/2 DE.

12) DE is the midpoint of the side BC of ∆ABC. AD is bisected at the point E and BE produced cuts AC at the point X. prove that BE: EX= 3:1.




Revision Test (November)

           SECTION A (Marks 40)
      (Attempt all questions) 

1)a) Ravi bought a radio for ₹840(GST at 7%) and a watch for ₹825(GST at 10%). Calculate the total amount. Ravi had to pay to settle the bill.
 b) Find the eighteenth term of 9,5,1,......

2)a) 

3a) solve the inequation: -2 ≤7- 3x < 1; x belongs to R. Represent the solution set on a number line.
 b) ABC is a triangle XY|| to BC which is same side of BC, area of∆ AXY= 49cm², area of trapezium BCYX= 24cm², BC= 10cm, find XY.

4a) A girl of height 90cm is walking away from the base of a lamp-post at a speed of 1.2m/s. If the lamp is 3.6m above the ground, find the length of her shadow after 4 seconds.
 b) Given A= 2    0
                       1    3 evaluate A²+2A.


          SECTION B (Marks: 40)
 




6a) Given x belongs to I, solve the inequation 3≥ (x-4)/2 +x/3 ≥2. Graph the solution set a number line.
b) How many terms of the geometric series 1+4+16+64+ ... will make the sum 5461 ?

7)a) A train travels a distance of 300 km constant speed. If the speed of the train is increased by 5 km an hour, the journey would take 2 hours less. find the speed of the train.
b) Ravi opened a Recurring Deposit Account in a bank and deposited ₹500 per month for 3 years. The bank paid him ₹20220 on maturity. Find the rate of interest paid by the bank.


8a) In an AP, the first term is 2 and the sum of first five terms is one-fourth of the next five terms. Show that its 20th term is -112.

b) i)If A= -1   3 & B= a & C= 10
                 4   k          5           20
And expression AB= C, find the values of a and k.
ii) If P= -3   1  & Q= -3      2
               2   0             1      4 , calculate PQ= Q²

9a)Solve for x: 3x²- 2x- 1=0.
------------------------------------------------------


Revision Test (metrices)

1) If A= 3      2 & B= 5/3     -2/3
              6      5           -2         1 then AB= ?
A) BA B) O C) I D) none

2) If A= 4       1
             -1       2 then A² - 6A= ?
A) I B) 9 C) -9 D) none

3) If I= 1    0
             0    1 then I³ is
A) I B) O C) 2 D) none

4) If A= 2   B= -3      C= 1
              3          1            2 and the relation X+A - B= 0. Then matrix X is
A) O B) 2I C) -3I D) none

5) If each element of a matrix is zero, it is called
A) null matrix
B) Unit matrix
C) Identity matrix
D) none

6) If A= 1   2   x & B= 1  -2    y
              0   1   0           0  1    0
              0   0   1           0  0    1 and AB= I, then x+y is
A) 0    B) -1 C) 2 D) none

7) If A= 1   -1 & B= a     1
              2   -1          b    -1 and (A+ B)²= A² + B², values of a, b are
A) 4,1  B) 1,4 C) 0,4 D) 2,4

8) If A= a      b
              c    - a is such that A² = I, then
A) 1+ a²+ bc= 0
B) 1- a²+ bc= 0
C) 1- a²- bc= 0
D) 1+ a²- bc= 0

9) 3x+7         5    = 0          y-2
     y+1        2- 3x    8           4 then find the values of x, y
A) -1/3, 7 B) 7, -2/3 C) -1/3, -2/5 D) not possible to find.

10) If A= 0    2 and kA=  0       3a
                3    -4                2b      24 then the values of k, a, b are
A)-6,-12,-18 B) -6,4,9 C) -6,-4,-9 D)6,12,18


Revision (Metrices)
1) a+2      b -3 = 2a -3       4b+1
     -1         3+c    -1.            5c-7 then find the value of a, b, c, d

2) If A= 2    x & B= y    0 & C= 8    -6
              1    5          3  -1          6    14 and the 3A + B= C then find x, y

3) If A= 1       4 & B= -4       -1
              2       2           -3      -2
A) find the matrix 2A+ B
B) find the matrix C such that: C+ B= O

4) If M- 2I= -3        0
                    12       3 and

5M + 3I= 8       -20
                 0       -12 Find the matrix M

5) If A= 1    3 & B= 1   2 & C= 4     3
              2    4          4   3          1     2 then find 
A) (AB)C
B) A(BC)

6) IF A= -2      1 & B= m & C= 5
                0     -3          1            n and AB= C then find the value of m, n.

7) If A= -1       1
               a        b and A² = I, find a, b

8) If A= 0       1 &      B= 0        1
              1      -2               1       -1 then 
Is A² - B²= (A+B)(A-B)

9) If A= 1      1 & B= 1        2
              0     2
And the relation MA = B where M is a matrix
A) state the order of matrix M
B) Find the matrix M.

10) If A= p      q & B= p
                                    q
The relation AB= 25 then the value of p, q

11) If A= 1     4 & B= 2       1
                1     0          3      -1 verify if IA² + IB² = A²I + B²I.



___________________________________

Write down the first five terms of the sequence, whose nth term is (-1)ⁿ⁻¹. 5ⁿ⁺¹.         25,-125,625,-3125, 15625

2) If the 3rd and 6th terms of an AP are 7 and 13 respectively, find the first term and the common difference.                              3 and 2

3) find the sum of all natural numbers between 100 and 1000 which are multiple of 5. 98450

4) how many terms of the AP -6, -11/2, -5,.... are needed to give the sum -25 ?                            5 or 20.

5) Determine the sum of the first 35 terms of an AP if a₂ = 2 and a₇ = 22.        2310

6) If the first term of an AP is 2 and the sum of first five terms is equal to one fourth of the sum of the next five terms, show that the 20th term is --112

7) Insert 3 arithmetic mean between 2 and 10.                  4,6,8

8) The sum of three decreasing numbers in AP is 27. If -1, -1, 3 are added to them respectively, the resulting series is in GP. The numbers are 
A) 5,8,13 B)15,9,3 C)13,9,5 D) 17,9,1

9) The sum of all odd numbers between 1 and 100 which are divisible by 3, is..
A) 83667 B) 90000 C) 83660 D) n 

10) If 7th and 13th terms of an AP be 34 and 64 respectively, then its 18th term is.
A) 87   B) 88   C) 89   D) 90 

11) If the sum of p terms of an AP is q and the sum of q terms is q, then the sum of the p + q terms will be..
A) 0    B) p-q   C) p+q   D) -(p +q)

12) If the sum of n terms of AP be n² - n and its common difference is 6, then its first term is..
A) 2    B) 3      C) 1     D) 4 

13) Sum of all two digit numbers which when divided by 4 yield Unity as reminder is..
A) 1200   B) 1210.  C)1250.  D) n

14) In n AM's introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3:1, then the value of n is..
A) 6      B) 8      C) 4     D) n 

15) The 1st and last terms of an AP are 1 and 11. If the sum of its terms is 36, then the number of terms will be.
A) 5     B) 6      C) 7         D) 8 

16) Find the sum of all odd integers from 1 to 1001.                      251001

17) If the ratio between the sums of n terms of two AP is (7n+1):(4n+27) find the ratio of their 11th term.   148: 111

18) If the sum of m terms of an AP be n and the sum of n terms be m, show that the sum of m+n terms is -(m+n).

19) If the sum of n terms of an AP is (pn+ qn²), where p and q are constants, find the common difference.                                   2q

20) In an AP, the first term is 2 and the sum of first five terms is one-fourth of the sum of next terms. Show that the 20th term is - 112 and the sum of first 20 term is -1100.

21) If the sum of n terms of an AP is given by (3n²+ 4n), find its rth term.                                        6r +1

22) The digits of a three-digit numbers are in AP and their sum is 15. The number obtained by reversing the digits is 594 less than the original number. Find the number.                                    852

23) Between 1 and 31, m numbers have been inserted in such a way that the ratio of 7th and (m-1)th numbers is 5:9. Find the value of m.                                              14

24) In the arithmetic progression whose common difference is non zero, the sum of the first 3n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2n terms the next to 2n terms is 
A) 1/5. B) 2/3  C) 3/4 D) none

25) If four numbers in AP are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are:
A) 5,10,15,20     B) 4,10,16,22
C) 3,7,11,15       D) none

26) The first and the last term of an AP are a and l respectively. if S is the sum of all the terms of the AP. and the common difference is given by (l²-a²)/{k -(l+a)}, then k is
A) S   B) 2S      C) 3S    D) none

27) If the sum of the first n even natural number is equal to K times the sum of the first n odd natural numbers, then k is..
A) 1/n B) (n-1)/n  C)(n+1)/2n D)(n+1)/n  

28) If the first, second and last term of an AP are a,b and 2a respectively, then its sum is 
A) ab/{2(b-a)}       B) ab/(b-a)
C) 3ab/{2(b-a)}     D) none

29) If x is the sum of an arithmetic progression of n odd number of terms and y the sum of the terms of the series in odd places, then x/y is
A) 2n/(n+1)               B) n/(n+1)
C) (n+1)/2n               D) (n+1)/n 

30) If the first term of an AP is 2 and common difference is 4, then the sum of its 40 terms is
A) 3200 B) 1600 C) 200 D) 2800

31) The number of terms of the AP 3, 7, 11, 15, ... to be so that the sum is 406 is...
A) 5 B) 10 C) 12  D) 14   E) 20

32) If a(1/b+ 1/c), b(1/c + 1/a), c(1/a + 1/b) are in AP , then
A) a, b, c are in AP
B) 1/a, 1/b, 1/c are in AP
C) a, b, c are in HP
D) 1/a, 1/b, 1/c are in GP. 

33) If the sum of the three numbers in AP be 18 then what is the middle term ?                                       6

34) The fifth term and the 11th term of an AP are 41 and 20 respectively. Find the first term. What will be the sum of first 11 terms of the AP. ?          825/2

35) The n-th term of an AP is p. Show that sum of first (2n-1) terms is (2n-1)p.

36) The middle term, of an AP having 11th term is 12. Find the sum of the 11 terms of that progression.                               132

37) There are n arithmetic means between 4 and 31. If the second mean : last mean=5: 14 then find the value of n.                         8

38) If the sum of the first P terms of an AP be equal to the sum of the first Q terms then show that the sum of the first P +Q terms is zero.

39) Find the sum upto n terms of the series 1²- 2²+ 3²- 4²+ 5²- 6²+.. ..          -n/2 (n+1) (n= 2r)

40) if the sum of p terms of an AP is to the sum of q terms as p²:q², show that (pth term)/(qth term)= (2p-1)/(2q-1).

40) The first term of an AP is a, the second term is b and the last term is c. Show that the sum is {(a+c)(b+c-2a)}/{2(b-a)}.

41) The sides of a right angled triangle are in AP. if the smallest side is 5cm then find the largest side.                                  25/3

42) find the sum of natural numbers from 1 to 200 excluding those divisible by 5.                           16000 

43) Show that the sum of all odd numbers between 2 and 1000 which are divisible by 3 is 83667 and of those not divisible by 3 is 166332.

44) Find the 14 A. M which can be inserted between 5 and 8 and show that their sum is 14 times the Arithmetic mean between 5 and 8.

45) Divide 25/2 into five parts in AP, such that the first and the last parts are in the ratio 2: 3.     2,9/4,5/2, 11/3, 3.

46) For what value of m, the sequence 2(4m+7), 6m + 1/2, 12m-7 forms an AP.               -3/4 

47) Find the 20th term of the AP 80, 75, 70,... Calculate the number of terms required to make the sum equal to zero.                                33 

48) Prove that if unity is added to the sum of any number of terms of the AP 3, 5,7,9...the resulting sum is a perfect square.

49) The sum of n terms of the series 25, 22, 19, 16,.. is 116. Find the number of terms and the last term. The given series is AP.  18405

50) Find the sum of all natural numbers from 100 to 300:
a) which is divisible by 4.      10200
b) excluding those which are divisible by 4.                          30000
c) which are exactly divisible by 5. 
d) which are exactly divisible by 4 and 5.                                8200, 2200
e) which are exactly divisible by 4 or 5.                                              16200






1/8/21

1) Amit deposited ₹150 per month in a bank for 8 months under the recurring deposit scheme. What will be the maturity value of his deposits, if the rate of interest is 8% p.a and interest is calculated at the end of every month ?             ₹1236

2) Lakshmi took a Cumulative time deposit account of ₹240 per month at 10% p.a. she received ₹3840 on maturity. Find the period for this account.                         15 months

3) Manoj opened a recurring deposit account in a bank and deposited ₹500 per month for 3 years  the band paid him ₹20220 on maturity. Find the rate of interest paid by the bank.                   8%

4) Rajeev opens a Recurring deposit account with the bank of Rajasthan and deposited ₹600 per month for 20 months. calculate the maturity value of this account, if the bank pays interest at the rate of 10% per annum.                              ₹13050

5) Miss Anshu Pandey deposited ₹350 per month for 20 months under recurring deposit scheme. Find the total amount payable by the bank on maturity of the account if the rate of interest is 11 % per annum.                        ₹7673.75

6) Mrs. Matthew opened a recurring deposit account in a bank with ₹500 per month for 5/2 years. find the amount she will get on maturity if the interest is paid on monthly balance at 12.5% per annum.  17421.87

7) calculate the amount received on maturity of a recurring deposit of ₹150 per month for 1 year 6 months, if the rate of interest is 11% per annum.            2935.13

8) Amar deposits ₹1600 per month in a Recurring deposit for 3 years at the rate of 9% p.a. simple interest, find the amount Amar will get at the time of maturity.           65592

9) A Recurring deposit account of ₹1200 per month has a maturity value of ₹12440. If the rate of interest is 8% interest and the intrest is calculated at the end of every month, find the time (in months) of the Recurring deposit account.                         10 months

10) Sujata deposited a certain sum of money, every month, for 5/2 years in cumulative time deposit account. At the time of maturity She collected ₹4965. if the rate of interest was 8% p.a. find the monthly deposit.                 150

11) Sumit paid ₹300 per month in cumulative time deposit account for two years. he received ₹7875 as the maturity amount. find the rate of interest.              9%

12) Meena has cumulative time deposit account of ₹340 per month at 6% per annum. if she gets ₹7157 at the time of a maturity, find the total time for which the account was held.                      20 months

13) on depositing ₹200, every month in a cumulative time deposit account, paying 9% p.a. interest, a person collected ₹2517 at maturity. find the period.              12 months.

14) Mr. Desai opens a recurring deposit of ₹2000 per month for 30 months paying simple interest of 12%p a. Calculate the amount he received at the time of maturity.  69300

15) Calculate the amount receivable on maturity of a recurring deposit of  ₹800 every month for 5 years at 11 % per annum.       

16) 






27/7/21
1) Roots of a quadratic equation are 1/2 and -14. Find the equation.   2x²+ 27x -14= 0

Solve::
2) √(3x²+x+5)= x-3.                -4, 1/2

3) 8(t²+1/t²)- 42(t- 1/t)+29=0.      15/4, 3/2
4) 5ˣ⁺¹ + 5²⁻ˣ = 126.

5) 3²ˣ - 10.3ˣ+ 9=0.                       2,0

6) 2²ˣ⁻¹ - 9. 2ˣ⁻²+1 = 0.               2, -1

7) 6x² - x -14= 0.

8) x² -8x -1280 = 0

9) 1/(2y-9) = 1/(y-3) + 4/5.

10) x⁵ +242= 243/x⁵.               -3,1

**Correct up to 2 decimal places.    
11) x² -6x -16 = 0.           -1.90, 7.90

12) 2x² +11x -10 = 0. 

13) The bill of a party for a certain number of people is ₹19200. If there were 10 more persons, the bill each person had to pay would have reduced by ₹160. Find the number of people at the party.                  30

14) A two digit number is such that the product of digits is 12. When 9 is added to the number the digits are interchanged. Find the number.

15) The sides of a right angled triangle are x cm, 4(x+1)cm, (4x+5) cm. Find x.

16) A man purchased some sheep for ₹4500. Three sheep were lost and the rest he sold for ₹30 more per sheep than he had paid. If his gain on the whole transaction is 8%, how many sheep did he buy?

17) the sum of the ages of a man and his son is 46 years and the product of their ages is 168 years. find the age of the Son.

18) The total surfaces area of a cylinder is 75.24cm² and its height is 3.6 cm. If its radius is x cm, find x 

***Find the nature of the roots.
19) 4x² - 4x+1=0

20) If m,n are roots of x²- px+q= 0, find
a) m²+n².                              p²-2q
b) m³+ n².                             p³ -3pq
c) m-n.                                -√(p²-4q).
d) m⁴+ n⁴.                    p⁴- 4p²q+2q²

*** Solve:
21) 3x² - x- 7 = 0.               1.70, -1.37

22) 1/(x+1) + 2/(x+2)= 4/(x+4).   2± 2√3

23) 2x² + √7x -7= 0.        √7/2, -√7

24) √3 x²+ 10x - 8√3= 0.    2√3/3, -4√3

25) (x+3)/(2x+3)= (x+1)/(3x+2).   -3± √6

26) (x-2)/(x+2)+ (x+3)/(x -2)= 4.  ±2√3

27) /(x+1)+ 2/(x+2)= 4/(x+4).    2± 2√3

28) a(x²+1)= (a²+1)x, a≠ 0.      a, 1/a

29) 4x² - 4ax +(a² - b²)= 0.   (a±b)/2

30) x/(x+1)- 4/(x+2)=0     3.24,-1.24

31) 5/(x -1)+ 2x/(x- 2)=0   1.61,-3.11

32) 2x - 1/x= 7.              3.64, -0.138

33) 2/(x -1)+ 3/(x+2)= 4/(x+2).   0.23, -8.77

34) (x+3)/(x-3) - (1-x)/x = 17/4. 4, -2/9
1) (x+3)/(x-3) - (1-x)/x = 17/4. 4, -2/9

35) a/(ax-1) + b/(bx-1)= a+ b, a+b≠0, ab≠0. (a+b)/ab, 2/(a+b)

Form the Quadratic equations whose roots are:
36) a) -2, 1. x²+x-2= 0
b) -3, -4. x²+7x +12=0
c) a,-b. x²-(a-b)x -ab=0
d) -2/3, 4/5. 15x²-2x -8=0
e) -3, 2/5. 5x²+13x -6=0
f) 2/5, -1/2. 10x²+x - 2=0

37) An Aeroplane travelled a distance of 480 km at an average speed of x kmhr. On the return journey, the speed was increased by 40 km/hr. Write down an expression for the time taken for
a) the onward journey
b) the return journey
If the return journey took 30 minutes less than the onward journey, write an equation in x and find the value of x. 160

38) Car A travels x km for every litres of petrol, while car B travels (x+5) km for every litres of petrol.
a) write down the number of litres of petrol used by car A and car B in covering a distance of 400 km.
b) If car A uses 4 litres of petrol more than car B in covering the 400 km, write down an equation in terms of x and solve it to determine the number of litres of petrol used by car B for the journey. 16 litres

39) In an auditorium, seats were arranged in rows and columns. The number of rows was equal to the number of seats in each row. when the number of rows was doubled and the number of seats in each row reduced by 10, The total number of seats increased by 300. Find
a) the number of rows in the original arrangement.
b) the number of seats in the auditorium after rearrangement. 30, 1200

40) A Hotel bill for a number of people for overnight stay is ₹4800. If there were four people more, the bill each person had to pay would have reduced by ₹200. find the number of people staying overnight. 8

41) A trader boy x articles for a total cost of ₹600. 
a) write down the cost of one article in terms of x.
 if the cost per article were ₹5 more, the number of articles that can be bought for ₹600 would be 4 less.
b) Write down the equation in x for the above situation and solve it for x. 24

42) The distance by road between two towns A and B is 216 km, and by rail it is 200 km. A car travels at a speed of x km/hr and the train travels at a speed which is 16 km/hr faster than the car. calculate:
a) the time taken by the car to reach town B from A, in terms of x
b) If the train takes two hours than the car, to reach town B, obtain an equation in terms of x, and solve it.
c) Hence, find the speed of the train. 52 km/hr

43) A train covers a distance 600 km/hr. Had the speed been (x+20) km/hr, the time taken to cover the distance would have been reduced by 5 hours. write down an equation in terms of x and solve it to evaluate x. 40 

44) x/(x+1) + (x+1)/x= 34/15, x≠ 0, x≠ -1. 3/2, -5/2

45) (x+3)/(x -2) - (1- x)/x= 17/4, 4, -2/9

46) 4/x - 3 = 5/(2x+3) -2, 1

47) 2x/(x -3)+ 1/(2x+3)+ (3x+9)/{(x-3)(2x+3) =0. -1





TEST PAPER
-----------------
                 Section - A
                  ___________
   (Answer all the questions from this section).     (40 marks)

1)                                            (1x10)
a) Amarnath purchased a cycle for ₹1664 including GST. If the list price of the cycle is ₹1600, then the rate of sales tax is..
A) 4%    B) 5%.    C) 6%.       D) 7%


c) the Quadratic equations whose roots are -3, -4
A) x²+7x+12=0    B) x²-7x+12=0
C) x²+7x-12=0     D) x²-7x-12=0

d) 
f) Sum of the roots of the Equation x² - 5x +6 
A) 5. B) -5 C) 6 D) -6

g) Number of roots in Quadratic equations are
A) 1 B) 2 C) 3 D) 4

h) a is less than b, written as a< b, if and only if b - a is
A) positive B) negative C) both positive D) both negative.

i) A dealer from West Bengal sells goods worth ₹50000 to a dealer in Bihar at 18% GST. Then seller collect ₹9000 as IGST and the entire amount will go to the..
A) Central Government only
B) State Government only
C) both A and B
D) none





3) Solve: 3x²- x-7= 0. Correct upto 2 decimals.                                    (6)

4) A shopkeeper buys an article whose printed price is ₹4000 from a wholesaler at a discount of 20% and sells it to a consumer at the printed price. If the sales are intrastate and the rate of GST is 12%, find
A) the price of the article inclusive of GST at which the shopkeeper bought it 
B) the amount of Tax (under GST) paid by the shopkeeper to the State government.
C) the amount of Tax(under GST) received by the Central Government.
D) the amount which the consumer pays for the article.                    (6)

5) Given A={x: 5x-4≥6, x∈ R} and B={x:5-x > 1, x ∈ R}
Represent A and B on the number line.
Find a) A∩ B b) A' ∩ B.                (6)



                SECTION -- B
            Attempt any 4       (40 marks)


b) 
7) a) using Quadratic formula, solve: 5 + 11x - 5x². (5)
8) a) Kriss goes to a shop to buy a leather coat costing ₹654. The rate of GST is 9%. He tells the shopkeeper to reduce the price to such an extent that he has to pay ₹654, inclusive of GST. Find the reduction needed in the price of the coat. (5)
b) a(x²+1)= (a²+1)x, a≠0. (5)




b) Find the smallest value of x which satisfies the inequation 2x + 7/2 > 5x/3 +3, x ∈I. (5)

10a) Ram paid ₹345.60 as GST on purchase of ₹3840. Find the rate of GST. (2)




c) 2x - 1/x= 7. (2)

d

11)a) 
b) 2/(x-1) + 3/(x+1) = 4/(x+2). (5)

8/7/21
1) 

7/7/21
1) The catalogue price of a colour T. V is ₹24000. The shopkeeper gives a discount of 8% on the listed price. He gives a further off-season discount of 5% on the balance. But GST at 10% is charged on the remaining amount. Find:
A) the GST a customer has to pay.
B) the financial price he has to pay for the colour TV.            2097.60, 23073.60

2) 
3) 2x -5≤ 5x+4<11, x belongs to R.

4) find the remainder if 4x³ - 6x²+7x -2 is divided by x - 1/2.              1/2

5) X: 13   15   18   20   22   24   25
F:.      6     4     11   9    16   12     2 find a) median b) lower quartile c) upper quartile d) semi-interquartile.   21, 18, 22, 2

6) If the m th term of an AP is a and its n th term is b, Show that the sum of its m+ n terms.

6/7/21
1) By remainder theorem show that 5x³+2x²-13x+6 is divisible by x+2.           
2) Given A= 30 and B= 60 verify sin(B-A)= sin B cos A - cos B sin A.

3) Given 2 tanx= 5 find (3sinx - 4 cosx)/(sinx + 4cosx).           7/13  

4) The sum of the three consecutive terms of an AP is 21 and the sum of the squares of these terms is 165. Find these terms.                 4,7,10

5) If the sum of n terms of an AP is 3n²+ 4n, find its rth term.         6r+1

6) Following table gives the basic salaries of person employed in an office.
Salary no. Of employees
200-300        11
300-400        10
400-500        15
500-600         8
600-700         4
A) using above information Calculate cumulative frequencies of the employees.
B) draw the ogive
C) estimate the median.      420

7) Mr. X purchased a cycle for ₹25488, which includes 10% rebate on the marked price and 18% tax on the remaining price. Find the marked price of the cycle.   24000

5/6/21
1) find the sum of all numbers between 100 to 300 which are divisible by 8.                            5000

2) Find the remainder when 3x³ - 9x +4 is divided by x-1.                     -2

3) Find the mean, median and mode of 3,7,10, 6,9, 5, 7, 5, 16, 7.     7.5, 7, 7

4) solve: x + 1/5< 4x/3+ 8/15≤ x/5 + 5/3, x belongs to R.      

5) find median
  Class        Frequency
   00-10            7
   10-20            9
   20-30          13
   30-40          25
   40-50          16
   50-60          10                     

6) class       frequency
   0-5                 4
  5-10                a
 10-15               8
 15-20               5
  20-25              3 if mean is 34/3 find a.                          

4/6/21
1) A V. C. R is marked for sale ₹ 14280 inclusive of GST at 12%. Calculate GST in rupees.  765,765

2) Find the remainder when 2x³+ 3x² - 2x +3 is divided by x+2 with the help of factor theorem.        3

3) Solve: -8/3≤ x + 1/3< 10/3; x belongs to R.                    -3≤ x < 3

4) √{(1-sinA)/(1+ sinA)}= cosA/(1+ sinA)

5) class           frequency
0-8                       3
8-16                     5
16-24                   7
24-32                   4
32-40                   2 find mode.    19.2

6) If the 10th, 28th and last term of an AP are respectively 29, 83, 122. Find its first term, common difference and number of terms.   2,3,41

1/7/21
1) Draw the histogram and hence the mode for the following:
Class frequency
00-10                    2
10-20                    8
20-30                   10
30-40                    5
40-50                    4
50-60                    3.                         23

2) calculate the mean, the median and mode of 6,3,6,5,4,6,8,4,5,3.   

3) Student   English    maths
      A                30           26 
      B                60           80 
      C                35           33 
      D                62           68 
      E                47           44 
      F                60           85 
      G                47          44 
      H                28          72 
      I                  64         65  find median.

4) Given x belongs to I, Solve the inequation 3≥ (x-4)/2 + x/3 ≥ 2.

5) Class        Frequency
    00-05            2
    05-10            7
    10-15            18
    15-20            10
     20-25            8
     25-30            5  find mode

6) Class        Frequency
    05-10            10
    10-15             6
    15-20             4
     20-25            12
     25-30             8 
     30-35             4
     35-40             2
     40-45             1
     45-50             3    find median

7) 

30/6/21
1) cosA/(1- tanA) + sinA/(1- cotA) = cosA + sinA.

2) Find the value of k, given that 3x³ + 4x³ - 6x + k is divisible by x+1.  

3) When ax²+ bx - 6 is divided by (x-1), (x+1), the remainder are -10, 4. Find a,b.

4) find: sin48/cos42 + (sin29 + cos61)(sin29- cos61).

5) Simplify: 2/5 ≤x - (1+2/5)<4/5, x belongs to R and graph the solution set on a real number line.

6) Find the remainder when 5x³+ 8x² -2x-9 is divided by x+2.

7) simplify: (sin63 + cos17)(sin50 - cos 40).

8) solve: -2≤7- 3x<1: x belongs to R

9) √{(1-cosx)/(1+cosx)}= cosecx- cotx



29/6/21
1) If tanx= 5/4, find the value of sin²x - cos²x.                            9/41

2) Kamta purchased a cycle for₹1664 including GST. If the list price of the cycle is ₹1600, find the rate of GST.                               4%

3) Find the values of m if (x-m) is a factor of x² + my -18.                 ±3

4) Solve: 3 ≥ (x-4)/2 + x/3 ≥2, x belongs to R.                    4.8≤x ≤ 6

5) Find the remainder when 2x³ - 6x +4 is divided by x+3.                     40

6) Find the mean, the median and the mode of the following data: 7,4,6,4,5,8,9,11,10,15,4,3.       7,6.5,4

7) 
8) Find the mode
Class interval     frequency
  0-5                          2 
 5-10                         2
10-15                       18
15-20                       10
20-25                        8
25-30                        5                   16

9) Salary (₹)     no.of people
         400               10
         600                8
         800                6
        1000              10
        1200              10
        1500                6
Find the mean salary.              ₹892

28/6/21
1) Simplify: -31/3 < 5y/3+ 3 ≤ y/2+ 16/3, y belongs to R.           -8<y≤2

2) prove x+1 is a factor of 3x³+5x² - 6x -8.                        
                 
3) If the mean of 10 Observation is 20 and that of another 15 observation is 16, find the mean of all 15 observation.                 17.6

4) Shikha bought a calculator for ₹1026, which includes 5% rebate on the marked price and then 20% GST on the remaining price. Find the marked price of the calculator.  900

5) Show that 3x -1 is a factor of 6x² + 7x -3.                                            1

6) Solve: 21/x² - 29/x -10= 0.   -7/2,3/5

7) weight     No.of students
      30-35           4
      35-40          16
      40-45          40
      45-50          22
      50-55          10
      55-60           8 
Find median.                                 44

8) Prove: cotx - tanx= (2cos²x -1)/(sinx cosx).   

9) Class       Frequency
    00-10            12
    10-20            16
    20-30             6
    30-40             7
    40-50             9 
Find mean.                                     22





27/6/21
1) Prove: (cotx -1)/(2-sec²x)= cotx/(1+tanx)

2) Manisha has a recurring deposit account for 2 years at 10% p.a. if she receives ₹1900 as intrest, find the value of the monthly installment paid by her.                              760

3) Find the mean of 25 observation, if the mean of 15 of them is 18 and the mean of remaining ones is 13.  16

4) Find the smallest value of x, which satisfies the inequation 2x+ 7/2> 5x/3 + 3, x belongs to I.       -1

5) Find the remainder when 2x³+7x²-x+1 is divided by x+1.      7

6) What is the rate of GST levied on an article that was sold at a price two and half times its marked price?                                         150%

7) 
9) Find the median
Wages          No of workers
4000-4400           8
4400-4800          12
4800-5200          20
5200-5600          25
5600-6000          17
6000-6400          10.                 4800

10) calculate the mean, the median and mode of the numbers:
3,2,5,4,1,7,2,5,4,2.               3.5, 3.5, 2

11) Prove: (1-sinA)/(1+sinA)= (secA- tanA)².

26/6/21
1)
Marks     No. Of students
0-9                   5
10-19               9
20-29              16
30-39              22
40-49              26
50-59              18
60-69              11
70-79               6
80-89               4
90-99               3
A) find median.                  42.6, 10
B) the number of students who obtained more than 75% marks.

2) Find the mean of the following:
X: 200  300  400  500  600  700
F:    5     11    10     10     8      6    446

3) The price of a washing machine inclusive of GST at 9% is ₹10028. Find its marked price. If the sales tax is increased to 14%, How much more does the customer pay for the washing machine?                  9200

4) Using remainder theorem, find the remainder when 5x² - 4x -1 is divided by (2x-1).                       -7/4

5) If 12 tanx= 5, then 13sinx-5 is.   0

6) Show that (x-5) is a factor of x³- x² -17x-15.

7) The mean of five numbers is 18. On excluding one number, the mean becomes 16. Find the excluded number.                                          26


25/6/21
1) The marks scored by 40 pupils of a class in a test were as follows:
X: 0      1        2      3      4        5 
F: 2      4        5     14    11       4
Calculate mean mark.                    3



3) Using the Step-deviation method, find mean:
Class          frequency
50-60               9
60-70              11 
60-70              10
80-90              14
90-100             8
100-110         12
110-120         11                           85.8

4) Draw the histogram and hence the mode for the following:
Class          frequency
00-10               2
10-20               8
20-30              10
30-40               5
40-50               4
50-60               3                             23

5) Find the remainder when 7x² - 3x +8 is divided by x-4. 108

6) If x belongs to integer, find the solution set for the inequation 5<2x - 3 ≤ 14 and graph it 


24/6/21
1) Mamta has a cumulative time deposit account in a bank. She deposits₹800 p.m and gets ₹15198 as maturity value. If the rate of interest be 7% p.s. find the total time for which the account was held.                                 18 months

2) The marks scored by 40 pupils of a class in a test were as follows:
X: 0     1     2    3    4     5 
F: 2     4     5   14  11    4
Calculate mean mark.                  3

3) solve: 2 ≤ 2x -3 < 5, x belongs to R and mark it on the number line.  5/2≤x< 4



5) Using the remainder theorem, find the remainder when 7x³+ 5x² - 4x - 1 is divided by x+1.             1

6) If the price of an Almirah including GST is 7884. If its marked price is₹7300, find the rate of GST.   8%


8) Using the Step-deviation method, find mean:
Class              frequency
50-60                  9
60-70                11 
60-70                10
80-90                14
90-100               8
100-110           12
110-120           11                     85.8

9) Prove: (1+cosA)/(1-cosA)= (cosecA + cotA)².




23/6/21
1) Find the remainder when 7x² - 3x +8 is divided by x-4.                   108

2) If x belongs to integer, find the solution set for the inequation 5<2x - 3 ≤ 14 and graph it on a number line.      

3) Find the values of p and q if g(x)= x+2 is a factor of f(x)= x³ - px + x + q and f(2)=4.                      9/2, 2

4) From the following, find
A) The average wage of a worker, Give your answer, correct to the nearest paise.
B) Medain 
  Wages in ₹.   No of workers
Below 10            15
Below 20            35
Below 30            60
Below 40            80
Below 50            96
Below 60           127
Below 70           190
Below 80           200.            44.85

6) Prove: √{(1+cost)/(1-cost)= cosect + cot t


22/6/21
1) Find the remainder when 2x³ - 3x² + 7x -8 is divided by x-1.          -1

2) Find the value of the constants a and b, If (x-2) and (x-3) are both factors of x³ + ax² + bx - 12.       3,-4

3) The catalogue price of a colour TV is ₹24000. The shopkeeper gives a discount of 8% on the listed price. He gives a further off-season discount of 5% on the balance. But, GST at 10% is charged on the remaining amount. Find:
A) GST amount a customer has to pay.                                       2097.60
B) The final price he has to pay for the TV.                              23073.60

4) x² - 10x +6= 0 Correct to decimal places.                 ..          9.36, 0.64

5) The distance by road between two towns A and B is 216Km, and by rail it is 208 km. A car travels at a speed of x km/hr, and the train travels at a speed which is 16km/hr faster than the car. calculate:
A) time taken by the car to reach town B from A. in terms of x.
B) time taken by the train to reach town B from A, in terms of x. 
C) If the train takes 2 hours less than the car to reach Town B, obtain an equation in x and solve it. 36
D) Hence find the speed of the train.                                    52 km/hr

6) A trader buys x articles for a total cost of ₹600.
A) write down the cost of one article in terms of x.
 If the cost for article were ₹5 more, the number of article that can be bought for ₹600 would be four less.
B) write down the equation in x for their work situation and solve it for x.                                                24

7) An aeroplane travelled a distance of 400km at an average speed of x km/hr. On the return journey, the speed was increased by 40km/hr. Write down expression for the time taken for:
A) The onward journey
B) The return journey if the return journey to 30 minutes less than the onward journey
If the journey took 30 minute less than the onward journey, write down an equation in x and find its value.  160

8) The work done by (x-3) men (2x-1) days and the work done by (2x+1) men in x+4 days are in the ratio of 3:10. Find the value of x.   6 






Tuesday, 11 May 2021

QUICK (SIMPLIFICATION) ADD+ SUB

1) 987 - 256 .                         731
2) 824 - 587.                            237
3)  9217 -  858.                     8359
4) 934 -  286+ 847.                 697
5) 3542- 7156 - 2188 +6843.   1041
6) 53629 + 39431 +8068- 6543 + 6129.          100714
7) 7849- 2731- 4132 -1763.    -777
8) 103 +607- 1146 +13846.   13410
9) 99786 -5584- 934- 88 - 9.  93171
10) 3963 - 2743 +4671- 5136. 755
11) 89561- 91436+ 9148 -3639.   3634
12) 35480+ 81563- 41341 - 51464.   24166
13) 8163+ 4769 +213 -687 -3691. 8767
14) 1971 -1636 -2148 +6136. 4323
15) 2967 - 5861 +2346 +3184.  2636
15) 86003 +3749- 41078 +3851 - 2136.          50389
16) 5671 - 2136 - 2449 -4167.   -3081
17) 5136 - 3249 +6784 -2931.  5740
18)  5784- 8448 +9146- 4138.  2344
19)  48936+ 36849 -63788+ 13526 + 21673.          57196
19)  3547- 6341+ 8149 -3671.  1684
20)  8163 - 13270+ 6984+ 4986.  577
21) 65888- 13739+ 80560 -70061.  62648
22) 3780 6321 8163 3900 1680 8163 3684 4192 3164 4570 12367 31600 7250 6730 38740 3344 4433 7788 8877 9669 6338 40008 5168 8678 1529 3149 6981 12368 12538 8649 40523 3753 23490 371 1648 583 2136 5320 2147 3584 6149 8193 496 6943 8853 5329 1148 6839 9343 144 8996 3193 5143 6358 7164 2936 5943 3784 631 947 546 834 1131 136 8888 6688 7777 5937 6660 5163 3967 51 8169 7143 8232 490 372 344 466 289 183 81 7632 249 2463 3143 563 8123 426 9150 621 749 7568 213 4231 264 5457 4215 612 3649 824 7100 642 42500 6748 372 91 2648 1056 544 2149 268 6279 8290 4673 5807 7516 8975 57 97 380 22 645 435 668 843 527 763 338 947 339 746 440 835 520 611 12624 15285 16234 19724 16318 386 738 920 848 523 3268 7327 515 674 5545 9587 6372 3849 1684 4273 6748 4372 1850 9204 7373 884 7368 2846 5330 9878 3380 7295 8275 6845 5300 1782 3369 4320 7360 965 9999 2345 1230 3456 123 8250 317 964 3489 6347 5332 3856 4972 5272 443 780 992 856 738 549 700 123 8243 9963 4580 3333 10238 5792 1601 8780 3312 2298 5580 9963 16385 902 5700 6347 9552 8263 7885 438 10084 3730 923 692 IX 6565 8282 9393 319 63 3256 4163 892 1505 3940 8592 6834 3845 7263 2723 428 306 742 96.3 640 3378 9309 8247 190 7581 1636 4525 3.33 8294 647 8680 740 7263 9309 844 569 282 464 7263 993 856 2757 32060 580 17090 378 1329 3496 6300 7953 582 772 840 569 522 437 6798 7520 918 3451 692 15623 8452 19266 24075 937 3582 7660 9247 8325 1712 1584 1926 2323 4565 666 965 7649 1865 9273 1584 1975 2362 1848 6797 57 56789 12345 98765 7654 223 784 906 standard 38 638 405 716 7515 6820 9216 642 881 360 75 943 272 3643 3959 7231 248 1700 condition error 476 442 6259 759 354 752 928 336 440 672 893 5640 3753 1254 342 6123 44119 33270 6247 40 1532 6123 31407 11111 315 60 1782 33122 6134 2134 6132 6319 1237 6877 143 121 12 21212 12346 31835 10023 12 234 6124 3122 4197 6380 1290 2345 8753 213 6178 4183 2127 61882 13576 3129 88045 6163 1642 30 8943 6100 8340 2976 32134 617 178 789 895 63129 400 4216 8563 2109 632 4196 3123 3190 526 6313 4215 5739 6123 37122 14216 3127 7795 4385 9796 7863 31264 51423 12496 31240 to 12978 613 2148 3100 824 31000 824 60 1321 80 1429 312 3314 31423 6129 12121 318 213 617 212 885 642 21345 31216 230 3892 60 1243 5678 7789 8819 1012 2340 123 89101 234 5678 3892 213 612 663 1221 9768 534 12 1289 2340 8120 3876 5455 6123 1287 61853 2344 3126 123 3888 3118 6123 1294 7123 9126 6164 3132 1993 8898 1230 4143 421 1248 9631 3345 6166 2854 6432 7887 9436 63 8263 1263 40 1263 e40 1865

QUICK ADDITION

1) 342 +557 +629 +746+ 825. 

A) 3099. B) 4009 C) 3909 D) 4339


2) 6965 +3246+ 1234+ 9847+ 8238.  

A) 29650 B) 29530. C) 30530 D) n


3) 1598+ 5423+4627+7953 + 8675.

A) 27726 B) 27676 C)28276. D) n 


4) 53421+ 67586+ 81538+ 69356.

A) 271901. B) 281901 C) 371902 D) n


5) 29388+51462+79863+ 81345. 

A) 34208 B)242058. C) 142058 D) n


6) 28654+ 56120+ 38561 +93268. 

A)216623. B)316623 C)416623 D) n


7) 96345+ 35671+ 68592+ 86432.

A)387040 B)287040. C)27040 D) 378040


8) 30508+ 38563+ 41634+ 86481.

A)197186. B) 9986716 C)996516 D)n 


9) 9152+ 6843+ 2461+ 3008.  

A)21464. B)31464 C) 21144 D) n


10) 2222 +3333+ 8888 +9999. 

A)24442. B)3442 C) 34442 D) n


11) 8563+ 3947+ 5760 +5691. 

A) 23961. B) 39621 C)43361 D)n


12) 2248+ 3167 +4385 +9158 +3749.        

A)22707. B)33707 C)22077 D) n


13) 18916+ 38431+ 29538+ 45691.

A)132576. B)44576 C) 232576 D) n


14) 28637 +47329 +29436 +63543.

A) 168245 B)168345 C)169245. D)n


15) 2931+4367+8139+4856+6934.

A)27227. B)22277 C)27777 D) n


16) 5871 +3973 +4869+ 3654+ 8191.       

A) 26558. B)25568 C)25658 D) n 


17)3381+4673+8629+2736+4856.

A)24275. B) 34275 C) 23275 D) n 


18)4967+8654+2167+3949+2763. 

A) 32500 B)22500. C) 23500 D) n 


19) 4768 + 3967 +5431+ 3670. 

A)17836. B) 17936 C) 18936 D)n


20) 680+ 3056 +4109 +3008.   

A)10853. B)10583 C) 18583 D) n 


21)3546+2939+4867+6349+5137.

A)22838. B) 22938 C) 22338 D) n 


22)2936+5138+4763+2458+8134.

A) 33329 B) 32439 C)23429. D) n 


23)3157+2361+ 4761+5869+ 3148

A) 22396 B) 18296 C)19296. D) n 


24)4327+6334+5886+4675+6751. 

A) 28973 B)27973. C) 28983 D) n


25)5639+3946+7154+3761+9159.  

A)29659. B) 20659 C) 28659 D) n 


26)8765+7654+6543+5432+4321. 

A) 32175 B)32715. C) 49755 D) n 


27)5637+4129+3786+6149+4764. 

A) 23365 B) 24465 C)24465. D) n 


28)1738+8162+3954+5146+3980. 

A)22980. B)22890 C) 21880 D) n 


29) 642 +513+ 675+ 963.     

A)2793. B) 2973 C) 2773 D) 2783 


30)1325+2438+3612+4753 +6540. 

A)18668. B) 19668 C) 20668 D) n


31)2342+3652+7465+6328 +8157. 

A) 26945 B)27944. C) 28954 D) n


32)3425+ 564+6512 +7415 +1057.

A)18973. B) 22973 C) 21973 D) n 


33) 18181818+ 181818+ 1818+18.

A) 1945472     B) 219765 C)18365472.   D) 9232322

34)2184+4567+3546+2468+7531.

A) 20296. B)30296 C)75312 D) n


35) 412 +342 +564 +827+ 615. 

A) 2760. B) 7620 C) 6720 D) none 


36)4782+396+ 4436+ 6118+ 2631. 

A)18345. B) 23445 C) 33445 D) n


37)793 +467 +307 +253 +885+ 848 

A) 3353 B) 5553  C) 3553. D) 3533


38)356 +496+ 836 +779+ 589 +295

A)3351. B) 3551 C) 5531 D) 2151


39)3268+7327+8515 +2674+5545.

A) 12344 B)27324. C) 55654 D) n

40)3127+7213 +1372+2371+3217.

A) 13400 B)17300. C) 23000 D)n

41)7329 +3563+8472+9245+2967.

A)31576. B) 41516 C) 616161 D) n

42)3201+7873+5279 +4364+ 6894.

A)27611. B) 35111 C) 54211 D) n

50) 73923+ 80453+ 19685+ 23889.

A)197950. B)219750 C)564320 D)n


51) 4324 +7288 +9346 +6289.

A) 54327 B) 54337 C)27247 D) n


52)889 +2375+3742+ 1036+ 7781. 

A)15823. B) 25823 C) 14823 D) n


53)354+ 631+ 248 +139+ 9765. 

A)11137. B) 21117 C) 11111 D) n

54)2203 +3202+2302+2032+ 3022.

A) 12761. B) 12671 C) 12661 D) n

55) 1268+ 979+ 3244+ 1873+ 65. 

A)7429. B) 4729 C) 7439 D) 7559


56) 965+ 1237 +89554+96.    

A)91852. B) 99852 C) 99952 D) n


57) 374+923+884+423+179.  

A) 7282 B)2783. C) 2784 D) 2785


58)4837+6255+9623+8515 +5962.

A)35192. B) 33192 C) 45192 D) n 


59)8729+7184+3345+4764 +5253.

A)29275. B) 5555 C) 35455 D) n


60)6565+1113+8247+7617 +1593.

A) 35135 B) 25131 C) 51355 D) n 


61)1536+8577+2345+6666+2936.  

A)22060. B) 32330 D) 45600 E) n 


62)6431+2194+3312+6317+123+ 2401.         

A) 20778. B) 30778 C) 20878 D) n 


63) 15632 +69146+ 42913 +63129 

A)190820. B) 244920 C) 1900820 D)n 


64) 63512+ 9123+ 62 +3146+ 331. 

A) 76174. B) 56431 C) 65244 D) n 


65) 3456 +4567 +5678+ 7890. 

A) 21671 B) 21591. C) 76511 D) n 


66)1614+2377+6412+3914+ 6152. 

A)20469. B) 45679 C) 87799 D) n 


67)356+453+414+ 637+ 984+ 331.

A)3175. B) 6176 C) 3177 D) 4135 


68) 3456 +8852 +3312+ 6819.   

A)22439. B) 88759 C) 99999 D)n


69) 352+ 457 +639+ 783 +1023.

A) 4598. B)3189 C) 4198 D) 6598 


70) 3485+6123+8769+1723+ 2443.

A)22543. B) 56453 C) 67533 D) n 


71) 8752 +6197+ 31872 +12964. 

A)59785. B) 52315 C) 55345 D) n 


72) 3652+ 9312+ 2213 +2163. 

A) 17340. B) 41320 C) 18440 D) n 


73) 8742+ 8957+ 6394 +3187. 

A) 27280. B) 27750 C) 67580 D)n 


74) 61 +342+ 366 +3842+ 33192.

A)45323 B)37803. C) 88975 D) n 


75)3742+6138+9898+9654+ 3819. 

A)33251. B) 54541 C) 89751 D) n 


76)1987+8942+4796+9834 +3999.

A) 78648 B) 66588 C)29558. D) n 


77)6719+ 8752+ 9637+ 1864.   

A) 26972. B) 56772 C) 98772 D)n 


78)2172+8543+9794+6142+ 3897.

A)30548. B) 67488 C) 88888 D) n 


79)632+1293+ 8567+ 312+ 6178. 

A) 16982. B) 78654 C) 17342 D) n 


80)3122+4163+3184+2122+1296.  

A)13887. B) 13557 C) 13457 D) n 


81)4138+7852+4293+8562+1374. 

A)26219 B) 55349 C) 87879 D) n 


82)4382+6123 +1398 +1212+ 664. 

A)13779. B) 14799 C) 13979 D)n 


83)1623+ 3156+ 2219+ 6123.  

A) 23231 B)13121. C) 32211 D) n 


84)2314+2315+2416+2718+4132.

A)13895. B) 54545 C) 13555 D) n 


85)123+842+631+ 928 +742+ 338. 

A) 4504 B) 3504  C)3604. D) 3304 


86) 6854+3219+8852+7413+6129.

A)32467. B) 56467 C) 67677 D) n 


87) 19763+ 45289+ 31267+ 94374.

A)190693. B) 19993 C) 89773 D)n 


Friday, 7 May 2021

REVISION (XII)

INVERSE TRIGONOMETRY
4.5.21
1) sin(2tan⁻¹1/5 - tan⁻¹5/12).       0

2) tan[ sin⁻¹1/3 +cos⁻¹1/√3].    5/√2

3) sin[2sin⁻¹1/√26+sin⁻¹12/13].     1

4) tan[2tan⁻¹1/5 - π/4].             -7/17

5) tan⁻¹sin cos⁻¹√(2/3).              π/6

6) tan(cos⁻¹4/5 + tan⁻¹2/3).     17/6

7) tan{1/2(tan⁻¹x + tan⁻¹1/x)}.    N.s

8) sin{tan⁻¹(tan7π/6)+ cos⁻¹(cos 7π/3)} is
A) 0      B) -1      C) 1         D) none

9) cos⁻¹y + cos⁻¹(x/2 + 1/2 √(3-3x²),   1/2≤x≤1.                            π/3

9.5.21
B) Prove:

1) 2tan⁻¹2 + tan⁻¹3 = π+ tan⁻¹1/3

2) 2cos⁻¹2/√5+ cos⁻¹3/5 =sin⁻¹24/25

3) 4tan⁻¹1/5 - tan⁻¹1/239=π/4

4) cos⁻¹8/17 + cos⁻¹3/5 + cos⁻¹36/85= π

5) cos⁻¹a - sin⁻¹b = cos⁻¹[b√(1-a²) + a √(1-b²)].

6) tan⁻¹p/q - tan⁻¹{(p-q)/(p+q)} = π/4

7) tan⁻¹x + tan⁻¹y + tan⁻¹{(1-x-y-xy)/(1+x+y- xy)}=π/4

8) tan⁻¹{(2a- b)/b√3} + tan⁻¹{2b-a)/a√3}=π/3

9) cos{1/2 cos⁻¹(-1/9)}= 2/3

10) a cosx + b sinx =√(a²+b²) cos(x - tan⁻¹b/a)= √(a²+ b²) sin(x + tan⁻¹a/b)
--------------------------------------------------------

11) 2 tan⁻¹a + 2tan⁻¹b = sin⁻¹[{2(a+b)(1-ab)}/{(1+a²)(1+b²)}

12) tan(1/2 cos⁻¹a)= √{(1-a)/(1+a)}

13) cos⁻¹√(3/5)= 1/2 cos⁻¹1/5

14) 2cos⁻¹3/√13 + cot⁻¹16/63 + 1/2 cos⁻¹7/25=π

15) cos⁻¹√(2/3) - cos⁻¹(√6+1)/2√3}= π/6.

16) 2tan⁻¹[√50 - √18 - 1/√{3- 2√2)} = π/4

17) 2tan⁻¹{tan(π/4 - a) tan b/2} = cos⁻¹{(sin 2a + cos b)/(1+ sin 2a cos b)}

18) 2tan⁻¹{tana/2 tan (π/4 - b/2)} = tan⁻¹{(sina cos b)/(cos a+ sin b)

19) tan⁻¹1+ tan⁻¹[tan²(a+b) tan²(a-b)]= tan⁻¹[1/2 (cos 2a sec 2b + cos 2b sec 2a]

20) a³/2 cosec²(1/2 tan⁻¹a/b) + b³/2 sec²(1/2 tan⁻¹b/a)= (a+b)(a²+b²).

21) tan⁻¹{(3 sin 2x)/(5+ 3cos 2x)} + tan⁻¹(1/4 tanx) = x

22) tan⁻¹{(2 sin 2x)/(1+ 2cos 2x)} - 1/2 sin⁻¹{(3 sin 2x)/(5+ 4 cos 2x)}= x


C) SOLVE:

1) tan⁻x + tan⁻¹2x + tan⁻3x= π. 1

2) cot⁻¹x + sin⁻¹1/√5=π/4. 3

3) tan⁻¹{(x-1)/(x-2)} + tan⁻¹{(x+1)/(x+2)}=π/4. ±1/√2

4) cos⁻¹8/x + cos⁻¹5/x =π/2. 16

5) sin⁻x + sin⁻¹(1-x)= sin⁻¹√(1-x²). 0, 1/2

6) tan⁻¹{(x+1)/(x-1)}+ tan⁻¹{x-1)/x}= tan⁻¹(-7), (x≠0,1). No sol.

7) sec⁻¹x/a + sec⁻¹x/b = sec⁻¹a + sec⁻¹b. ab

8) sin⁻¹x - cos⁻¹x = sin⁻¹(3x-2). 1/2,1

9) cos⁻¹{(x²-1)/(x²+1)}+ tan⁻¹{2x/(x²+1)= 2π/3. √3, 2-√3

10) sin [2cos⁻¹cot(2tan⁻¹x)]=0. ±1, 1±√2, -1±√2

11) tan⁻¹{(x-1)/(x+1)} + tan⁻¹{2x-1)/(2x+1)}= tan⁻¹7/6.                   2

* If sin⁻¹x + sin⁻¹y= π/2, prove 2(x² - xy +y²)= 1+ x⁴+y⁴

* If a= tan⁻¹{x√3/(2k -x)} and b=tan⁻¹{(2x-k)/k√3}. Show that one of the values of a- b is π/6.

* If tan⁻¹yz/xr + tan⁻¹zx/yr + tan⁻¹xy/zr = π/2, prove x² + y² + z² = r²

* If sin⁻¹x + sin⁻¹y= 2π/3, find the value of cos⁻¹x + cos⁻¹y. 1

* If cos⁻¹x/2 + cos⁻¹y/3= a, prove that 9x² - 12xy cos a + 4y²= 36 sin²a

* Show that the least value of (sin⁻¹x)³ + (cos⁻¹x)³ is π³/32.

* Prove tan⁻¹√(xr/yz) + tan⁻¹√(yr/zx) + tan⁻¹√(zr/xy)=π, when x+y+z= r

* If tan⁻¹x + tan⁻¹y + tan⁻¹z=π/2 and x+y+z= √3, show that, x=y=z

* If cos⁻¹x + cos⁻¹y + cos⁻¹z=π and x+y+z= 3/2, prove that, x=y=z

* If sin⁻¹x/a + sin⁻¹y/b = sin⁻¹c²/ab, then show b²x² + 2xy√(a²b² - c⁴) + a²y² = c⁴.

* If ax + b sec(tan⁻¹x)= c and ay + b sec(tan⁻¹y)= c, show that, (x+y)/(1-xy) = 2ac/(a² - c²).

* If A= sin⁻¹(sinx + siny) - sin⁻¹(sinx - siny) and sin²y + sin²x = 1/2 (0<x<π/2), then show that, cosA= cos 2y - cos 2x.

* If tan⁻¹√{(a²-x²)/(a²+x²)} + tan⁻¹{(b² - y²)/(b²+ y²)} = k/2, prove x⁴/a⁴ - (2x²y²cos k)/a²b² + y⁴/b⁴ = sin²k

* If {m tan(a-x)}/cos²x = n tan x/cos²(a-x), then show x= 1/2[a- tan⁻¹{(n-m)/(n+m)} tana]