Thursday, 14 November 2024

MATH TEST PAPER - VII

PERCENTAGE AND ITS APPLICATION 

1) If 15% of 40 is greater than 25% of a number by 2, then what is the number?

2) rajnish scored 62% in English, 80% in mathematics and 56% social science. If the maximum marks in these subjects were 50, 100 and 75 respectively, find her aggregate persentage.

3) 40% passengers from a train got down at station A. 60% of the remaining passengers got down at station B. If there were still 540 passengers in the train, how many passengers were there before station A, provided no one boarded the train at station A and station B?

4) Two fifth of one third of three seventh of a number is 15, what is the 40% of the number ?

5) Three candidates contested in an election and received 1136, 7636, 11628 votes respectively. What percentage of total votes did the winning candidate get ?

6) The price of a car is Rs325000. It was insured to 80% of the price. The car damaged completely in an accident and the insurance company paid 90% of the insurance. What was the difference between the price of the car and the amount received?

7) A student has to obtain 33% marks of the total marks to pass. He has got 125 marks and failed by 40 marks. Find the maximum marks.

8) A man spends 35% of his income on food. 25% on children's education and 80% of the remaining on house rent. What percent of his income is left with hum?

9) A student 30% marks and failed by 15 marks. B scored 60% marks and obtained 35 marks more than those required to pass. What is the pass percentage ?

10) The sum of the number of boys and girls in a school is 150. If the number of boys is x then the number of girls becomes x% of the total number of students . Find the total number of boys in the school.

11) The population of a town increases by 8% annually. If the present population is 54000. What was it a year ago?

12) An alloy contains 40% copper, 32% nickel and rest zinc. Find the mass of zinc in one kg of the alloy










TEST PAPER 


Section - A (1x5=5)

1) Find the value of (8⁹-8⁷)/8⁶
a) 504 b) 505 c) 508 d) 501

2) Find the range of 29,39,19,7,9,14,78,76,97,12
a) 12 b) 31 c) 4 d) none

3) Two coins are tossed simultaneously. Find the probability of getting two heads.
a) 1/2 b) 4 c) 1/4 d) 2

4) A dice is thrown twice. The total outcome are
a) 2 b) 4 c) 6 d) 8

5) Which of the following is not a linear equation:
a) x + y -2=0
b) 2x + 5 = 11
c) 4x²  -15=0
d) 2/x =9


Section B (3x 9=27)

6) Solve: (2ⁿ x 3ⁿ + 2ⁿ⁺¹ x 3ⁿ⁺¹)/(2ⁿ⁺² x 3ⁿ⁺² + 2ⁿ⁺¹ x 3ⁿ⁺³)

7) Find n so that (2/5)³ x (2/5)⁻⁸= (2/5)²ⁿ⁻¹

8) Numbers 1 to 10 are written on 10 separate slips and kept in a box and mixed up well. One slip is chosen from the box without looking into it. Find the probability of 
a) getting a number 5
b) getting a number less than 8
c) getting a number greater than 7
d) getting a two digit number.

9) A letter is chosen from the word EQUATION. Find the probability that the letter is a constant 

10) A bag contains 8 white balls. 5 green balls and 7 balls. They are mixed thoroughly and one ball is drawn random. Find the probability of getting 
a) red ball
b) a green ball
c) a yellow ball 
d) a white ball rolling 

11) (7y +4)/(y +2) = -4/3

12) (3y -1)/4 + (2y +3)/3 = (1- 7y)/6

13) {5(y +12) - 17(2- y)}/(7y -1) = 8

14) Read the table carefully and answer the following questions:
Marks.      Students 
10-20          7
20-30         12
30-40         19
40-50         11
50-60         21
60-70         10
70-80          8
80-90         02
90-100       10
If the passing marks in the test is 30, then 
a) How many students have failed in the examination?
b) If A⁺ is awarded to students with 90 marks, how many students have achieved A⁺ marks?
c) How many students have passed the examination?
d) If student getting 60 or more is declared 1st division then find the number of students who have been put in 1st division.

15) The data shows India's total population (in millions) from 1951 to 2011. Represent the given data by bar graph.
Years.   Population 
1951          360
1961          432
1971          540
1981          684
1991           852
2001         1020
2011          1210



















TEST PAPER 1-(SET, MENSURATION, PROFIT AND LOSS, DATA HANDLING)

1) If ξ be a universal set and other sets are defined as follows:
A={1,2,3,4,5}, B={2,3,5,8}, C={1,3,5,7,9} and ξ={1,2,3,....,9} Then find 
a) A' 
b) B'
c) (A ∩ B)'
c) C'
d) A' ∩ B'

2) For the given set,
A={1,2,3}, B={2,3, 4,5}, C={1,3,5,7}, D={2,6,7,8} Show 
a) A U B
b) A ∩B = B ∩ A
c) (A U B) 

3) A retailer loss 8% by selling a camera for Rs12800. At what price should he sell it in order to gain 8%?

4) If selling price of 40 articles is equal to cost price of 50 article, find the loss or gain percent.

5) P sells an article to Q at 10% profit. Q sells it to R at 25% profit. If R pay Rs250 for it, what did P pay for it ?

6) Mohan bought a watch for Rs1100 and sold it at the profit of Rs125. Find the SP.

7) The difference between the SP and CP of an article is Rs210. If the profit percent is 23, then what is its selling price.

8) An item when sold for Rs1169 earned 40% profit on the CP. What is its CP.

9) If the ratio of CP and SP is 5:6, find gaun%.

10) The perimeter of a rectangular cardboard is 96cm; if it's breadth is 18cm, find the length and the area of the cardboard.

11) The area of a square plot is 484cm². Find the length of its one side and the length of its diagonal.

13) The perimeter of a rectangular plot is 120m. If the length of the plot is twice its width, find the area of the plot 

14) How many square tiles of side 20cm will be needed to pave a footpath which is 2 metres wide and surrounds a rectangular plot 40m long and 22m wide.
15) The following are the ages(in years) of 10 teachers in a school: 32,28,54, 41,38,40,23,33,26,35.

16) The points scored by a kabaddi team in a series of matches are as follows: 7,17,2,5,27,15,8,14,10,48,10,7,24,8,28,18.
Find the mean and median of the points scored by the kabaddi team.

17) If the numbers 3,6,7,10, x, 15,19,20,25,28 are in ascending order and their median is 13, find the value of x 

18) Given below are the marks obtained by 27 students in a test:
21,3,28,38,6,40,20,26,9,8,14,18,20,16,17, 10,8,5,22,27,34,2,35,31,16,28,37.
a) Using the class intervals 1-10, 11-20, etc. constuct a frequency table.
b) State the range of these marks 
c) State the class mark of these marks 





Tuesday, 12 November 2024

MORE REVISION- XII


CONTINUITY 

1) If f(x)= Kx/|x|,   if x< 0 
                        3,    if x ≥ 0 is continuous at x= 0, then the value of k is 
a) -3 b) 0 c) 3 d) any real number.     

2) The number of points of discontinuity of f defined by f(x)= |x | - |x +1| is 
a) 1 b) 2 c) 0  d) 5.   

3) Show that the function 
     f(x)= (sinx)/x  + cosx,    if x≠ 0
                 2,                          if x=0 is continuous at x=0. 

4) If f(x)= {√(4 +x 0) -2}/x, x ≠ 0 be continuous at x= 0, then 4f(0) is equal to 
a) 1/2 b) 1/4 c) 1 d) 3/2.   

5) If the function f defined as 
    f(x)= (x²-9)/(x-3) ,    x≠ 3
                 k                   x=3 is continuous at x= 3, then the value of k is 
a) 1 b) 2 c) 6 d) 5        

6)  The function 
      f(x)= (k cosx)/(π- 2x),   if x≠ π/2
                   3.                       if x=π/2 is continuous at x=π/2, when k equals 
a) -6 b) 6 c) 5 d) -5.        

7) Determine f(0), so that the function f(x) defined by 
     f(x)= (4ˣ -1)³/{sin(x/4) log(1+ x²/3)} becomes continuous at x=0.     

8) Find the value of a, for which the function 
f(x)= {√(1+ ax) - √(1- ax)}/x, if -1≤x <0
         (2x+1)/(x-1),                 if 0≤ x < 1 is continuous at x=0.     

9) The function f(x)= xⁿ, where n is a positive integer, is 
a) continuous at x = n
b) limit of f at x= n does not exist 
c) limit of f at x= n exists and not equal to f(x)
d) none of the above.   

10) If f(x)= λ(x²-2x), if x≤ 0
                     4x +1,   if x> 0 then which one of the following is correct.
a) f(x) is continuous at x= 0 for any value of λ
b) f(x) is discontinuous at x= 0 for any value of λ
c) f(x) is continuous at x= 1 for any value of λ 
d) none.    

11) The function= (4- x²)/(4x - x³) is 
a) discontinuous at only one point 
b) discontinuous at exactly two points
c) discontinuous at exactly three points
d) none.      

12) The function defined by 
f(x)= x+5,  if x≤ 1
         x -5,  if x> 1 is discontinuous at 
a) x= 0 b) x=1 c) x=2 d) none     

13) The function= (9- x²)/(9x - x³) is 
a) discontinuous at only one point 
b) discontinuous at exactly two points
c) discontinuous at exactly three points
d) none.       

14) Examine the continuity of 
f(x)=(logx - log2)/(x -2), x> 2
           1/2,           x= 2 at x=2
       2{(x -2)/(x²-4)}, x < 2

15) f(x)= 1,      if x≠ 0
                2,      if x= 0 is not continuous at 
a) x= 0 b) x= 1 c) x= -1 d) none     

16) If  f(x)= 2x and  g(x)= (x²/2) +1, then which of the following can be discontinuous 
a)  f(x) +  g(x)
b) f(x) - g(x)
c) f(x) . g(x)
d) g(x)/f(x).     

17) Find the value/s of k. So that the following functions is continuous at x=0
f(x)= (1- cos kx)/(x sinx),   if x≠ 0
                 1/2,                     if x=0.        

18) All the points of discontinuity of the function f defined by 
f(x)= 3, if 0≤ x ≤ 1
         4, if 1< x<3
         5,  if 3≤ x ≤10 are 
a) 1,3 b) 3,10 c) 1,3,10 d) 0,1,3.    

19)      (1- cos4x)/x²,       x < 0
If f(x)=   a,                        x= 0
            √x/√{16+ √x -4},  x> 0 and f is continuous at x= 0, then find the value of a.    

20) The function 
f(x)= (sin3x)/x,    x≠ 0
           k/2,            x=0 continuous at x=0, then the value of k is 
a) 2 b) 4 c) 6 d) 8        

21) Examine the continuity of a function 
f(x)= |x| cos(1/x),  if x≠ 0
            0,                 if x=0
at x=0.                                             



LINEAR PROGRAMMING 

1) The feasible region corresponding to the linear constraints of a Linear Programming Problem is given below. 
Which of the following is not a constraint to the given Linear Programming Problem?
a) x+ y ≥ 2 b) x+ 2y ≤ 10 c) x- y ≥ 1 d) x1 y ≤ 1.    

2) The corner points of the bounded feasible region determined by a system of linear constraints are (0, 3), (1,1 0) and (3,0). Let Z= px + qy, where p,q > 0. The condition on p and q, so that the minimum of Z occurs at (3,0) and (1,1).  
a) p=2q b) p= q/2 c) p= 3q d) p= q.     

3) Solve the following Linear Programming Problems graphically,
 Minimise Z = x + 2y
 Subject to constraints: x + 2y≥ 100; 2x - y≤  0, 2x + y ≤ 200, x, y≥ 0.      

4) Solve the following Linear Programming Problems graphically,
 Maximise Z = - x + 2y
 Subject to constraints: x ≥ 3,  x + y≥ 5, x + y ≥ 6, y≥ 0.         

5) The number of feasible solutions of the linear programming problem given as Maximize Z= 15 x + 30y, subject to constraints : 3x + y≤ 12,  x + 2y≤ 10, x≥ 0, y≥ 0 is
a) 1 b) 2 c) 3 d) infinity.   

6) The feasible region of a linear programming problem is shown in the figure below 
Which of the following are the possible constraints?
a) x+ 2y≥ 4, x + 2y≤ 3, x ≥  0, y≥ 0.  
b) x+ 2y≤ 4, x + y≤ 3, x ≥ 0, y≥ 0.  
c) x+ 2y≥ 4, x + 2y≥ 3, x ≥  0, y≥ 0.  
d) x+ 2y≥ 4, x + 2y≥ 3, x ≤  0, y≤ 0.       

7) Solve the following Linear Programming Problems graphically,
 Minimise Z = 500x + 409y
 Subject to constraints: x + y≤ 200; x ≥ 20, y ≥ 4x,  y≥ 0.    

8) The graph of the ineuality 2x + 3y > 6 is 
a) half plane that contains the origin.
b) half plane that neither contains the origin not the points of the line 2x + 3=6
c) Whole XOY plane excluding the points on the line 2x + 3y = 6 
d) entire XOY plane.    

9) In an LPP , if the objective function has Z= ax+ by has the same maximum value on two corner points of the feasible region, then the number of points at which Zₘₐₓ occurs is
a)  0 b) 2 c) finite d) infinite.  

10) If Z= 2x + 3y, subject to constraints x. + 2y ≤ 10, 2x + y≤ 14, x, y≥ 0, then find the corner points of feasible region.        

11) Solve the following LPP graphically:
Maximize Z= 4x + 6y,
Subject to constraints x + y≤ 8, x, y ≥0.     

12) Find the minimum value of Z, where Z= 2x + 3y, subject to constraints  2x + y≥ 23; x + y≤ 24, x, y≥ 0.      

13) The feasible solution for LPP is shown below and the objective function is Z= 15 x - 4y.
Based on the above information, answer the following questions.
a) Find the value of (n -1)², where n is number of corners points.     
b) Find Z₆ ,₁/₂ + Z₀,₂.      
c) Find the co-ordinate point of D.     
d) find the maximum of Z.    

14) The feasible region for an LPP shown in the following figure.
Let F= 3x - 4y be the objective function. Maximum value of F is
a) 0 b) 8 c) 12 d) -18.    

15) if feasible solution of a LPP is given as follows :
And the objective function is Z= 10500x + 9000y.
On the basis of above information, answer the following question.
a) if n is the number of Corner Points. then find the value of (n + 2)³.   
b) find the value of Z₀ , ₁.      
c) Find the point where objective function is maximum.    
d) Evaluate Z₂₀ , ₂₀ - Z₀₀ , ₁₀.     

16) Solve the following Linear Programming Problems graphically,
 Minimise Z = -50x + 20y
 Subject to constraints: 2x - y≥ -5; 3x +y≥ 3, 2x -3y ≤ 12, x, y≥ 0.      

17) Solve the following Linear Programming Problems graphically,
 Minimise Z = 2x + 5y
 Subject to constraints: 2x + 4y≤ 8; 3x + y≤ 6, 2x + y ≤ 4, x, y≥ 0.      

18) Solve the following Linear Programming Problems graphically,
 Minimise Z = 5x + 10y
 Subject to constraints: x + 2y≤ 120; x +y≥ 60, x - 2y ≥ 0, x, y≥ 0.     

19) Solve the following Linear Programming Problems graphically,
 Minimise Z = 3x + 5y
 Subject to constraints: 3x -4y≥ -12; 2x - y≥ -2, 2x + 3y ≥ 12, 0 ≤ x ≤ 4, y≥ 2.      



INCREASING AND DECREASING 

1) Find the intervals in which the function f: R---> R defined by f(x)= xeˣ is increasing.  

2) If f(x)= a(tanx - cotx), where a> 0, then find f(x) is increasing or decreasing function in its domain.       

3) Show that the function f defined by f(x)= (x -1) eˣ +1 is an increasing function for all x > 0.

4) The function f given by f(x)= 3x +17, is
a) strictly increasing on R
b) strictly decreasing on R
c) decreasing on R
d) both (b) and (c).     

5) Find the intervals on which the function f(x)= (x -1)³(x -2)² is strictly increasing and strictly decreasing.        

6) Which of the following statements is true for f(x)= 4x³- 6x²- 72x + 30?
I) f is increasing in the interval of (-∞,-2)
II) f is strictly increasing in the interval (3, ∞).
III) f is strictly decreasing in the interval (-2,3)
IV) f is neither increasing nor decreasing in R.
a) I and II are true 
b) II and III are true 
c) II and IV are true 
d) All are true 

7) Show that the function f(x)= (x³- 6x²+ 12x -18) is an increasing function on R.

8) Show that the function f given by f(x)= log cosx is strictly decreasing function for x ∈ (0, π/2).

9) If y= x(x -3)² decreases for the values of x given by
a) 1< x <3 b) x< 0 c) x>0 d) 0< x < 3/2.    

10) The interval in which y= x² e⁻ˣ is 
a) (-∞, ∞) b) (-2, 0) c) (2, ∞) d) (0,2).       

11) Find the intervals in which the function f(x)= 20- 9x + 6x²- x³ is 
a) Strictly increasing.     
b) strictly decreasing.     

12) If I be any interval disjoint from [-1,1], then the function f given by f(x)=x + 1/x is 
a) strictly decreasing on I
b) strictly increasing on I
c) decreasing on I
d) Only (a) and (c) are true.  

13) The least value of a, such that the function f given by f(x)=x²+ ax + 1 is strictly increasing on (1,2) is 
a) -1 b) -2 c) 0 d) 1.    

14) The function f(x)= 4 sin³x - 6 sin²x +12 sinx +100 is strictly 
a) increasing in {π, 3π/2)
b) decreasing in (π/2,π)
c) decreasing in [-π/2, π/2]
d) decreasing in [0, π/2].    

15) Show that the function f(x)= x/3 + 3/x decreases in the intervals (-3,0) U (0,3).

16) The function f(x)= sinx + cosx x belongs to [0, π/4] is 
a) increasing function b) strictly increasing function c) decreasing function d) strictly decreasing function.    

17) Show that y= log(1+x) - 2x/(2+ x), x > -1 is an increasing function of x, throughout its domain.

18) Find the interval in which the function f given by f(x)= tanx - 4x, x belongs to (0,π/2) is 
a) strictly increasing.     
b) strictly decreasing.   



METRIX 


1) If A= [aᵢⱼ] is a square matrix of order 2 such that 
aᵢⱼ= 1,    when i≠ j
       0,    when I= j then A² is 
a) 1  0 b) 1  1 c) 1  1 d) 1  0
     1  0     0  0      1  0     0. 1          

2) If A and B are invertible square matrices of the same order, then which of the following is not correct?
a) adj A= |A| A⁻¹
b) det(A⁻¹)= [det(A)]⁻¹
c) (AB)⁻¹= B⁻¹A⁻¹
d) (A+ B)⁻¹= B⁻¹ + A⁻¹       

3) The value of |A|, if
A= 0       2x -1         √x
    1-2x    -2√x        2 √x
     -√x     -2√x         0 where x ∈ R⁺ , is
a) (2x+1)² b) 0 c) (2x +1)³ d) none       

4) Given that A is a square matrix of order 3 and |A|= -2, then |adj (2A)| is equal to 
a) -2⁶ b) 4 c) -2⁸ d) 2⁸         

5) Solve: 2/x + 3/y + 10/z =4; 4/x - 6/y + 5/z =1, 6/x + 9/y - 20/z =2.      

6)     1      4      x 
If A= z      2      y
        -3     -1     3 is a symmetric matrix, then the value of x + y + z is 
a) 10 b) 6 c) 8 d) 0          

7) If A. (adj A)= 3    0     0
                            0    3    0
                            0    0    3 then the value of|A|+ |adj A| is equal to 
a) 12 b) 9 c) 3 d) 27       

8) A and B are skew-symmetric matrices of same order. AB is symmetric, if
a) AB=0 b) AB= - BA c) AB= BA d) AB=0      

9)     1   0    2
If A= 0   2    1
         2   0    3 then show that A³- 6A²+ 7A + 2I =0.

10) If A= 3     2
                5    -7 then find A⁻¹.

11) If A is a square matrix of order 3, such that A(adj A)= 10I, then|adj A| is equal to 
a) 1 b) 10 c) 100 d) 101       

12) If A is a 3x3 Matrix such that |A|= 8, then |3A| equals 
a) 8  b) 24 c) 72 d) 216       

13)    2     -3      5
If A= 3       2     -4
         1       1      -2 then find A⁻¹. Using A⁻¹, solve the following system of equations 2x - 3y + 5z = 11; 3x + 2y - 4z = -5;  x +y -2z = -3.        

14)  x+3    z+4   2y-7      0       6      3y-2
If      -6      a-1      0     = -6      -3      2c+2
       b-3     -21      0       2b+4  -21       0 
Then values of x,y,z,a,b,c are 
a) x=-3, y=-5, z=2, a= -2, b= -7, c= -1
b) x=-2, y=-7, z=-1, a= -3, b= -5, c= 2
c) x=-3, y=-5, z=2, a= 2, b= 7, c= 1
d) x=3, y=5, z=2, a= 2, b= 7, c= 1.      

15) If matrix A given by 
A= 1.     -1
      0       3 
      2       5 then the order of the matrix A is
a) 1x2 b) 2x3 c) 3x2 d) 2x2        

16) If A= 4     2
               -1     1 show that (A'- 2I)(A - 3I)= O

17)     2     0       1 
If A=  2      1       3 
          1      -1      0 then find the value of A²- 5A.

18) In the following questions, a statement of Assertion(A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.
  a)  Both A and R are true and R is the correct explanation of A
  b)  both A and R are true but R is not the correct explanation of A
  c) A is true but R is false
  d) A is false but R is true
Assertion (A) The matrix
A= 3    -1          0
    3/2   3 √2.    1
     4     3          -1 is rectangular Matrix of order 3.
Reason (R): If A=[aᵢⱼ]ₘₓ₁ , then A is column matrix.       

19) Solve the following system of equations by matrix method when x≠ 0, y≠ 0 and z≠ 0. 
2/x - 3/y + 3/z = 10
1/x + 1/y + 1/z = 10
3/x - 1/y + 2/z = 13.        

20) The sum of 3 number is 6. Twice the third number when added to the first number gives 7. On adding the sum of the second and third numbers to thrice the first number, we get 12. Find the numbers, using Matrix method.      

21) if A=[aᵢⱼ] be a man matrix, then the matrix obtained by interchanging the rows and columns of A is called the transpose of A.
A square matrix  A=[aᵢⱼ] is said to be symmetric , If Aᵀ= A for all possible values of i and j.
A square metrix  A=[aᵢⱼ] is said to be skew-symmetric, if Aᵀ = - A for all possible values of i and j.
Based on the above information, answer the following questions.
  i) find the transpose of [1  -2    -5].
  ii) find the transpose a matrix (ABC).            iii) Evaluate (A+ B)ᵀ - A, where
A= 0      1 & B= 1      2            
      2     -1          3      4             

22) Evaluate (AB)ᵀ, where 
A= 1   1 & B= 3      2         
      0   1          1      4          

23) 5    0      4      1     3     3
A=  2    3      2      1     4     3
       1    2      1      1     3     4 Compute (AB)⁻¹

24)   -4    4     4          1     -1      1
A=    -7    1      3 & B= 1    -2     -2
          5   -3    -1           2     1      3 Determine the product of AB and then use to solve the system of equations x - y + z= 4, x - 2y - 2z =9 and 2x + y +3z =1.        

25)  1    -1   0          2     2      -4
A=   2     3    4 & B=-4    2      -4
        0     1    2          2   -1       5 then find AB. Use this to solve the system of equations x - y = 3, 2 x +3y +4z =17 and y +2z =7.             

26)    1    0     -2
If A= -2   -1     2
          3     4     1 show that A³- A²- 3A - I= O.

27) If a Matrix has 8 elements , then which of the following will not be a possible order of the matrix ?
a) 1x8 b) 2x4  c) 4x2  d) 4x4    

28) For what values of K, The Matrix 
2- K     4
   -5     1 is not invertible ?
a) 8 b) 17 c) 22 d) 25    

29) If A= 2     3 
               -4    -6 then which of the following is true?
a) A(adj A)≠ |A| I
b) A(adj A)≠ (adjA)A
c) A(adj A)= (adj A)A=|A| I  = O
d) none         

30) Let A= 2    3
                  -1    2 and f(x)= x²- 4x +7.
Show that f(A)= O. Use this result to find A⁵. 

31) If A= (2   -3   4) & B= 3
                                          2
                                          2
& X= (1    2      3) and Y= 2
                                          3
                                          4
Then AB+ XY is equal to 
a) [28] b) [24] c) 28 d) 24

32) Find the inverse of the matrix 
1         0          0 
0       cosx    sinx 
0       sinx    - cosx

33) If x +y      7 = 2      7
            9       x- y   9     4 then xy is equal to 
a) 1 b) 2 c) -3 d) -5         

34) If A+ B= 1   0 & A - 2B= -1     1
                      1   1                   0    -1 then matrix A is 
a) 1/3   1/3    b) 1/3     2/3
     2/3   1/3        1/3     1/3
c) 1/2     3/2     d) 1     1
    5/2     5/2        1/3   2/3      

35) If A= 4    6 & B= 3      -6
                -3   7          5     -8 with the relation X+ A= B, then matrix X is 
a) -1 -12 b) 1 -12 c) -1  -1 d) 7  0
     8  -15    -8 -15       0   0     2  -1     

36) A= 3    -4
             1   -1 then A⁻¹ is equal 
a) -1 4 b) 1 4 c) 1 -4 d) 1  4
    -1 3     -1 3      1 -3     3 -1

37) In the following questions , a statement Assertion (A) is followed by the statement of Reason (R). Choose the correct answer out of the following choices.
a) Both A and R are true and R is the correct explanation of A 
b) both A and R are true but R is not the correct explanation of A 
c) A is true but R is false
d) A is false but R is true 
Assertion (A)
If A= 3    1
        -5    x then (-A) is given by 
-3    -1
 5    -x
Reason (R): The negative of a Matrix is given by - A and is defined as -A = (-1) A.   

38) if A is a matrix of order 3 such that A(adj A)= 10I. Then the value of |adj A| is 
a) 10 b) 100 c) 110 d) 5          

39) if A is skew-symmetric matrix, than A² is 
a) symmetric matrix 
b) skew-symmetric matrix 
c) null matrix d) none.      

40) Find A⁻¹ if 
A= 0   1    1
      1   0    1
      1   1    0 and show that A⁻¹ = (A²- 3I)/2

41) if a matrix A is both symmetric and skew-symmetric, then A is 
a) null matrix 
b) identity Matrix 
c) diagonal Matrix 
d) none of these         

42) If A is symmetric matrix, then B'A is 
a) symmetric matrix 
b) skew-symmetric matrix 
c) scalar matrix d) none        

43) If A= 2    3 
               -1    2 then find A²- 4A + I       

44) If A= 1   0 & B= 1    0
               -1   7          0    1 then find K so that A²= 8A + KI.    

45) If A⁻¹ = 2   3 & B= -1  0
                    1   2           1  2, then value of [A+ 2B]⁻¹ is
a) -4 1 b) -4 5 c) -4 5 d) -4 1
      5 6      1  6      6 1       2 4     

46) The non-zero values of x satisfying the matrix equation xA+ 2B = 2C where 
A= 2x  2  & B= 8  5x & C= x²+8  24
       3   x           4. 4x           10     6x is
a) 1 b) 2 c) 3 d) 4