Monday, 27 June 2022

JEE (Main and Advanced)

                  SECTION- I
    Single Correct Answer Type
       
(This section contains 8 single correct choice type questions. Each question has 4 choices a, b, c, d for its answer, out of which ONLY ONE is correct.)

1) Uf the curves x² - y² = 4 and xy =√5 intersect at points A and B, then the possible number of point(s) on the curve x² - y² = 4 such that triangle ABC is equilateral is
a) 0 b) 1 c) 2 d) 4 

2) If A and B are two events such that P(A∩B)= 0.3 and P(A'∩ B')= 0.6, then the value of P(A∩ B') or (A' ∩B) is..
a) 0.9 b) 0.7 c) 0.3 d) 0.1

3) The value of lim ₓ→∞{²ˣ₀ ∫ ₓ ₑx²/ₑ4x²)dx equals to
a) 1/2 b) 1 c) 2 d) ∞

4) The number of values of k for which the equation x³ - 3x + k = 0 has two distinct roots lying in the interval (0,1) are
a) three b) two c) Infinity many d) no value of k satisfies the requirement

5) The domain of the function f(x)= cos⁻¹(cos⁻¹x) is 
a) [-1,1] b) [0,π] c) [0, cos 1] d) [cos 1, 1]

6) If dy/dx = f(x) + ¹₀∫ f(x) dx, then the equation of the curve y= f(x) passing through (0,1) is..
a) f(x)= (2eˣ - e+1)/(3- e)
b) f(x)= (3eˣ - 2e+1)/{2(2-e)}
c) f(x)= (eˣ - 2e +1)/(e+1)
d) none of these

7) If the complex number z satisfies the equation z z'= z² + z'² then the maximum value of arf z - arg z' is (z' is conjugate)
a) 5π/3 b) 4π/3 c) 2π/3 d) π/3

8) If a, b, c are in AP and f(x)= 
x+ a x²+1 1 
x+b 2x² -1 1 
x+ c 3x² -2 1 then f(1) is
a) -1 b) 0 c) 1 d) none

                 SECTION - II
    Multiple Correct Answer Type
    
(this section contains 4 multiple correct choice type questions. Each question has 4 choices: a, b, c, d for its answer, out of which ONE or MORE is/are correct)

9) Let P is any point on the curve S = 0 such that tangent from P to x² + y² - 2x - 4y - 4 = 0 makes 60° with each other and from point Q perpendicular tangents are drawn to S, then
a) locus of P is circle of radius 5.
b) locus of P is a circle of radius 6.
c) locus of Q is a circle of radius 5√2.
d) Locus of Q is a circle of radius 6√2.

10) A function f: R--> R⁺ satisfies f(x +y)= f(x). f(y), x and y belongs to R, f(0)= 1; f'(0)= 2 then
a) ˡⁿ₀∫ [f(x)e⁻ˣ] dx = ln 4.5 where [.] denotes greatest integer function.
b) lim ₓ→₀[f(x)] does not exist (where [.] denotes greatest integer function).
c) f⁻¹(x) = ln √x, x > 0
d) f(x)= ₑx²- 4x has infinite solution in (0,6).

11) Consider the two lines r= i + j + M(i+ k) and s= j+ k+ L(i+ j), if PQ is the line of shortest distance, then
a) their shortest distance is √26.
b) their point of intersection is j + k.
c) their shortest distance is zero.
d) the length of projection of OP on i+ j+ k is 2/√3.

12) Consider n= 21⁵²,then
a) number of even divisors of n is 704.
b) number of divisors of n is 2809.
c) last two digits of n are 41.
d) number of divisors of n which is multiple of 9 is 2705.

               SECTION- III 
        Comprehensive Type
      
(this section contains 2 groups of questions. Each group has 3 multiple choice questions based on a paragraph. Each question has 4 choices: a, b, c, d for its answer, out of which ONLY ONE is correct.
 paragraph for question number 13 to 15 

Consider an ellipse S= x²/a² + y²/{a²(1- e²)} - 1 = 0.
 Let M= 0 be a parabola on the right of y axis confocal with S = 0 having vertex at the centre of S= 0.
 Let P be the point of intersection of the parabola and the directix of ellipse in the first quadrant and L= 0 is the directrix of the parabola.

13) The ordinate of the point from the which the pair of tangents drawn to both the parabola and the ellipse, are separately at right angles is
a) a√(1- e²) b) √2 a √(1- e²)
c) 2a √(1- e²) d) a √(2- e²)

14) Pair of tangents are drawn from any point on L= 0 to S = 0 and M= 0. Then the locus of point of intersection of their chord of contact is 
a) x= ae b) x= a/e c) x= {a√(1 - e²)/e} d) x = ae √(1- e²)

15) If the tangent at point Q on S = 0 and the line joining the points P to the locus of M= 0 intersect at the auxiliary circle of S= 0, then eccentric angle of the point Q is (Q lies in first quadrant)
a) tan⁻¹{e/√(1+ e²)}
b) tan⁻¹{2e/√(1- e²)}
c) tan⁻¹{√2 e/√(1+ e²)}
d) tan⁻¹{e/√(1- e²)}

 Paragraph for question number 16 to 18

 Let m, n, q be the 3 real numbers such that m²+ n² + q² - q = 0 and z= (m+ ni)/(1- q)
16) |z|² equals
a) q b) 1 - q. c) q/(1- q) d) (1- q)/q

17) m equals
a) (z + z')/2(1+ |z|²)
b) (z'+ z)i/2(1+ |z|²)
c) (z - z')i/2(1+ |z|²)
d) none

18) n equals 
a) (z- z')/2(1+ |z|²)
b) (z'- z)i/2(1+ |z|²) 
c) z/2(1+ |z|²)   
d) 2z/(1+ |z|²)  


           SECTION - IV
       Matrix Match Type
        
This section contains 2 
 questions. Each question contains statements given in two columns which have to be matched. The statements in Column- I are labelled A, B, C, D, while the statements in column-II are labelled 1, 2, 3, 4, 5. Any given statement in Column-I can have correct matching with ONE OR MORE statement(s) in Column- II. 

19) Column - I
A) If f(a)= 4 and a< 60, then number of possible values of a are
B) if f(a)=0, then a can be
C) if f(a)< 0, then a can't be
D) if f(a)= -(2k +1), where k belongs to natural number, then a can be
Column - II
1) 4
2) 14
3) 25
4) 6
5) 10

20) Column - I
A) if maximum and minimum values of 5 cos k + 3 cos k (k+ π/3) + 4 for all real values of k are m and n respectively, then
B) if minimum and maximum values of 4+ sin(π/4+ k) + 2 cos(√)4 - k) for all real values of k are n and m respectively, then
C) If number of solution of log|sinx| = x² - 16x, when x belongs to (0,π) is n and when [0,5π] is m, then
D) if number of solutions of 1+ [sin x] = cos x , +where [.] denotes the greatest integer function) when x belongs to (0, 10π) is m

Column - II
1) m+ n= 12
2) m- n= 6
3) m+ n= 8
4) m- n= 8

Monday, 6 June 2022

Revision Maths (XI)

23/9/22

Trigonometrical ratios of angles



g) sin 135° cos 210° tan 240° cot 300° sec 330°.              1/√2

h) cos 24°+ cos 55° + cos 125° + cos 204° + cos 300°.                   1/2


i) tan π/12 tan 5π/12 tan 7π/12 tan 11π/12.             1

j) tan 1° tan 2° tan 3°....... tan 87° tan 88° tan 89°.             1

k) sin²120+ cos²120+ tan²120+ cos180 - tan 135.            9/2

a) If A, B, C, D are the successive angles of a cyclic quadrilateral then prove 
i)cosA+ cos B + cos C + cos D = 0.

ii) tan(A+ B)+ tan(C + D)= 0.

b) If cos x - sin x =√2 sin x then show cosx + sinx =√2 cosx.

c) If x= r cos k cos m, y= r cos k sin m and z= r sin k then show x² + y² + z² = r².

d) If tan⁴x + tan²x = 1, then show cos⁴x + cos²x = 1.

e) If x= a sec k cos m, y= b sec k sin m and z= c tan k, then show x²/a² + y²/b² - z²/c² = 1.

f) if tan x= (siny - cos y)/(sin y + cos y) then show sin y + cos y= ± √2 cos k.

g) If x be an angle of fourth quadrant and sec x= 5/3 then find the value of (6tan x + 5 cosx)/(5 cotx + cosecx).               1

h) If tanA + sin A= m and tanA- sin A= n, then show m² - n² = 4√(mn).

i) If 3 sinx + 4 cosx = 5, then show sin x= 3/5.

j) If tan x + sinx = m, tan x - sinx = n, then show mn= tan²x. sin²x and 4√(mn)= m² - n².

k) show 3[sin⁴(3π/2 - x) + sin⁴(3π+ x)] - 2[sin⁶(π/2 + x) + sin⁶(5π - x)] independent of x.

l) If sinx + cosecx = 2, then show sin⁷x + cosec⁷x = 2.

j) If 1 + sin²A = 3 sinA cosA then find the value of tan A.      1, 1/2

k) A, B, C are the three angles of an acute angled triangle and cos(B+ C - A)= 0, sin(C+ A- B)= √3/2. Find the value of A, B, C.     45, 60, 75

l) If cos²x - sin²x = tan²y, then show cos²y - sin²y = tan²x.

m) Show: 4(sin⁶x + cos⁶x) - 6(sin⁴x + cos⁴x)= - 2.

n) If x sin³a + y cos³a= sina and x sina - y cosa = 0, then prove x² + y² = 1.

o) If a sinx = b cos x = (2c tanx)/(1- tan²x), prove (a² - b²)²= 4c²(a² + b²).

p) If a sinx + b cos x = c then show a cosx + b sinx  = ±√(a²+ b²+c²)

q) If 4x secA = 1+ 4x² then show secA + tanA = 2x or 1/2x.

r) If cos⁴x + cos²x = 1 then prove tan⁴x + tan²x = 1.

s) If p tanx = tan px then show sin²px/sin²x = p²/{1+ (p² -1)sin²x}

t) Eliminate x: tanx - cotx = a, cosx + sinx = b.

u) If tanA= n tan B, sinA= m sin B, then show cos²A = (m² -1)/(n² -1).






8/6/22
prove: 
a) {1+ cot x - sec(π/2+ x)}{1+ cot x + sec(π/2+ x)}= 2 cot x.

b) sin 420 cos 390 + cos(-300) sin(-330)= 1

c) cot π/20 . cot 3π/20 . cot 5π/20.  cot 7π/20 . cot 9π/20 = 1

d) cos 24+ cos 55+ cos 125+ cos 204 + cos 270+ cos 300 = 1/2

e) (sin 150 - 5 cos 300+ 7 tan 225)/tan 135 + 3 sin 210) = -2

6/6/22
1) Show that:
a) sin 105°+ cos°105= 1/√2.

b) sin(40+x) cos(10+x) - cos(40+ x) sin(10+ x)= 1/2.

c) cos(3π/2+ x) cos(2π + x)[cot(3π/2 - x) + cot(2π+ x)]= 1.

d) {cos(π+x) cos(-x)}/{cos (π- x) cos(π/2 + x) = - cot x.

e) cos x/sin(90+ x) + sin(-x)/sin(180+ x) - tan(90+x)/cot x = 3.



Day-1

1) Find the value of 405°.

2) Find the value of cos(-2220°).

3) 4 sin(π/6) sin²(π/3)+ 3cos(π/3) tan(π/4) + cosec²(π/2).

4) Prove: 
{Cos (90+x)sec (270+x) sin (180+x)}/ {Cosec(-x)cos (270-x) tan (180+x)} = cosx.

5) Prove Cosx/sin (90+x) + sin (-x)/sin(180+x) - tan(90+x)/cotx= 3

******
Complex numbers 
1) If z is a complex number such that |z|=1, prove that {(z -2)/(z+1)} is purely imaginary. What will be your conclusion if z= 1?

2) If a+ ib = (c+i)/(c - i), where c is real, show that a²+ b²=1 and b/a = 2c/(c²-1).

3) Find real values of x and y for which the following equalities hold:
a) (1+ i)y²+ (6+ i)= (2+ i)x. 5,±2
b) (x⁴+2xi) - (3x²+ iy)= (3- 5i)+ (1+2iy). ±2,(3,1/3)

4) Express (1-2 i)⁻³ in the standard form a + ib. -11/125 + -2i/125

5) Find real values of x and y for which the complex numbers - 3+ ix²y and x²+ y+ 4i are conjugate of each other. ±1, -4

Quadratic equations
1) Solve:
a) 25x²- 30x +11=0. 3/5 ± √2i/5
b) x² - (7- i)x + (18- i)= 0 over C. 4 - 3i, 3+ 2i
c) x²-4x +13=0. 2 ± 3i
d) 2x²+ 3ix +2 =0. i/2, -2i

Linear Inequalities

1) If |2x -3|< |x+5|, then find the interval in which x lies. x ∈(-2/3,8)

2) The solution set of (x +3)/(x-2) < 2. x∈ (-∞,2) U[7,∞)

3) (2x +3)/5 < (4x-1)/2 then find the interval in which x lies. x∈ (11/6, ∞)

4) 7x -2 < 4 - 3x and 3x -1 < 2+ 5x, then find the interval in which x lies. x∈ (-3/2, 3/5)

5) The set of all real numbers x for which x²- |x +2|+ x > 0, is ______. x∈ (-∞, - √2) U (√2, ∞).